
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2018-03-01

A Large-Scale Analysis of How OpenSSL Is Used in
Open-Source Software
Scott Jared Heidbrink
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Heidbrink, Scott Jared, "A Large-Scale Analysis of How OpenSSL Is Used in Open-Source Software" (2018). All Theses and
Dissertations. 6716.
https://scholarsarchive.byu.edu/etd/6716

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6716&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6716&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F6716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6716?utm_source=scholarsarchive.byu.edu%2Fetd%2F6716&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

A Large-Scale Analysis of How OpenSSL Is Used in Open Source

Software

Scott Jared Heidbrink

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Daniel Zappala, Chair
Eric Mercer
Ryan Farrell

Department of Computer Science

Brigham Young University

Copyright c© 2018 Scott Jared Heidbrink

All Rights Reserved

www.manaraa.com

ABSTRACT

A Large-Scale Analysis of How OpenSSL Is Used in Open Source
Software

Scott Jared Heidbrink
Department of Computer Science, BYU

Master of Science

As vulnerabilities become more common the security of applications are coming
under increased scrutiny. In regards to Internet security, recent work discovers that many
vulnerabilities are caused by TLS library misuse. This misuse is attributed to large and
confusing APIs and developer misunderstanding of security generally. Due to these problems
there is a desire for simplified TLS libraries and security handling. However, as of yet there
is no analysis of how the existing APIs are used, beyond how incorrect usage motivates the
need to replace them. We provide an analysis of contemporary usage of OpenSSL across
410 popular secure applications. These insights will inform the security community as it
addresses TLS library redesign.

Keywords: TLS, SSL, API, source code analysis, static code analysis

www.manaraa.com

ACKNOWLEDGMENTS

Thanks go to my advisor Dr. Daniel Zappala for allowing me into his lab and helping

throughout the troubles of thesis work. Thanks also to Mark O’Neill for convincing me I

needed to get a degree. Thanks to my wife, Caffreina, for understanding when I had late

nights, and to Link for coming when I had first hoped to finish.

www.manaraa.com

Table of Contents

List of Tables vi

1 Introduction 1

2 Related Work 3

2.1 TLS library failures . 3

2.2 TLS library replacements . 5

2.3 API Mining . 6

3 Background 8

3.1 TLS/SSL . 8

3.2 OpenSSL . 8

3.3 Secure Socket API . 9

4 Methodology 11

4.1 Extracting Symbols . 12

4.2 API Documentation Analysis . 12

4.3 Categorization of Symbols . 12

4.4 Source Code Collection . 13

4.5 Graph Generation . 13

4.5.1 Joern . 13

4.6 Symbol Analysis . 14

4.7 Synthesis and Recommendations . 15

iv

www.manaraa.com

4.8 Limitations . 15

5 Results 17

5.1 Data Collection . 17

5.2 API Documentation Analysis . 18

5.3 Category Analysis . 18

5.3.1 Version selection . 19

5.3.2 Extension management . 22

5.3.3 Session management . 26

5.3.4 Certificate/PrivateKey management 28

5.3.5 Certificate/Key validation . 30

5.3.6 Cipher suite selection . 32

5.3.7 Configuration . 34

5.3.8 Allocation . 36

5.3.9 Connection management . 36

5.3.10 Instrumentation . 37

5.3.11 Miscellaneous . 37

6 Failures 40

7 Future Work 42

8 Conclusion 45

A Category Breakdown 46

B Total Usage 59

References 71

v

www.manaraa.com

List of Tables

5.2 Breakdown of OpenSSL’s libssl symbols by purpose. Many categories deal

with management of the TLS protocol itself, but some others are concerned

with allocation of objects and configuration of the library itself 18

5.3 Version Method usage . 20

5.5 Explicit TLS extensions implemented by OpenSSL. 23

5.6 Extension usage . 24

5.7 Most used cache options . 27

5.8 Cipher Suite choices . 33

5.9 Individual Options selected . 38

5.10 Individual Modes selected . 39

vi

www.manaraa.com

Chapter 1

Introduction

Transport Layer Security (TLS) is the primary security protocol of the Internet,

and especially the Web. Sadly, TLS libraries have been shown to be difficult to use and

understand [7, 13]. This has led to developers misusing these libraries and leaving their

applications vulnerable to the attacks TLS is meant to prevent. This problem has been

prevalent across differing TLS libraries and languages [10]. The problem is exacerbated

by the complexity of the TLS protocol and extensions, which has led to developers even

misunderstanding the guarantees of TLS and how the protocol functions internally [6, 13].

The problems of this misunderstanding and misuse are only becoming more prevalent as

the call for “TLS everywhere” grows [1]. Security incidents are becoming more publicized

and developers are forced to adopt more and more security responsibilities without proper

training and understanding of security considerations.

These problems have led to recent work in how to educate developers and users about

security practices, and TLS library redesigns to provide simpler means for developers to

use the TLS protocol [4, 10]. While these library redesigns have focused on the problem of

authenticating TLS connections, many other problems exist as well [7, 16], which all seem to

stem from how current TLS usage violates the layer abstraction for which it was originally

designed [28]. We believe there is a better approach, through moving the responsibility of

security from application developers to operating systems and system administrators who

have been shown to have more attention and concern to security matters [23]. The approach

1

www.manaraa.com

we consider most appealing is porting TLS functionality to the operating system using the

same POSIX socket API with which network application developers are already familiar.

While some efforts attempted to simplify library APIs [4], there seems to be no

consideration of whether developers are even taking advantage of the flexibility these TLS APIs

offer. As security properties are determined by much of the flexibility of TLS [14, 17, 19, 25],

we believe taking a comprehensive look at how TLS APIs are actually used is an important

consideration in future libraries and TLS use. We seek in this work to perform this analysis

and provide insight into what security decisions should be made by application developers or

system administrators. Unless security is the focus of the application, application developers

are often less concerned with security matters. Because of this, many security considerations

are best left to the user (or system administrators) who are more concerned and familiar

with their security needs [23]. While application developers may be in a better position,

for example, to know what hostnames they need to connect to, system administrators may

wish to limit who they trust to verify the identity of the hostnames. Further, when security

vulnerabilities are found, such as insecure protocol versions, often application developers are

slow, if ever, to update their application [10], but system administrators would be much more

responsive in disabling the insecure protocol. We seek to more fully explore this relationship

and how to best place security decisions in the hands of the appropriate party.

Our contributions are as follows:

• A detailed analysis of the OpenSSL API

• Analysis of how developers are using the OpenSSL API

• Recommendations on how to simplify the OpenSSL API by replacing it with the POSIX

API

2

www.manaraa.com

Chapter 2

Related Work

We separate related work into three categories. The first category contains efforts to

measure and assess developer mistakes in their use of TLS libraries. The second category

comprises efforts to replace or redesign TLS libraries in an effort to simplify them for developer

use. Finally, the third category includes efforts to perform API Mining, which covers work

relating to analyzing API usage in general.

2.1 TLS library failures

Previous analysis of application usage of TLS has largely focused on how applications fail to

perform proper certificate validation. Georgiev et al. [13] provided one of the first large scale

analyses of TLS usage in non-browser applications by performing white and black box testing.

They found that many applications are vulnerable to MitM attacks due to improper certificate

validation. While the study was not comprehensive across all applications, the paper did find

vulnerabilities in a wide range of applications from banking to instant messengers, which used

a range of TLS libraries as well. Their conclusions were libraries are confusing to developers,

don’t provide safe defaults, and are not adequately tested. They also found in some instances

developers were intentionally misleading and had disabled certificate validation while assuring

end users their communications were secure.

The work by Georgiev et al. involved a large amount of manual effort and, because of

the nature of white and black box testing, is difficult to scale. To overcome this limitation,

He et al. introduced an automated tool, SSLint [16], to perform static code analysis of how

3

www.manaraa.com

popular Ubuntu packages use contemporary TLS libraries. The primary function of the tool

was to create program dependence graphs (PDGs) for an application and compare those

to a labeled graph of known correct API usage. Modeling correct usage was preferable to

modeling incorrect usage due to TLS libraries’ APIs having relatively few correct uses, while

there are numerous ways to use them incorrectly. Using standard graph querying/matching

algorithms, they were able to find 27 new vulnerabilities against 381 applications. While the

signatures used for correct API usage only modeled certificate validation, the methodology

applies to any modeled usage.

Fahl et al. [9] conducted a similar study as Georgeiv but within the mobile application

ecosystem. They performed static code analysis on 13,500 Android applications and found

that even on Android, which provides a more standardized TLS handling library through

Java, developers face similar problems to desktop systems. They later extended this work

and looked at 1,009 iOS applications as well and then conducted interviews with developers

to try and find the root cause of improper verification [10]. They found various causes of

such mistakes:

• Forgetting to re-enable proper verification when switching from development to produc-

tion.

• Misunderstanding of vulnerabilities caused by improper verification.

• Accepting all self-signed certificates when a self-signed certificate is used

• Slow, if ever, updates when informed about security problems.

Sounthiraraj et al. [26] improved on Fahl’s work, similar to He over Georgiev, by

creating a more automated tool, SVM-Hunter, that combined static and dynamic analysis

techniques. The tool takes further advantage of the homogeneous nature of the Android OS,

from the unified Java secure socket API, to explicit permissions and installation methods.

They were able to find 1,453 possible vulnerable Android apps, 726 of which were confirmed

vulnerable.

4

www.manaraa.com

Rather than just looking at proper certificate validation, Bhargaven et al. [7] looked

more at vulnerabilities caused by improper TLS handling and its interaction with higher

protocols. They even introduced a novel triple-handshake attack and showed how the cookie

forcing attack can be used when applications don’t properly consider TLS handling. Their

recommendations require a change in how each application handles TLS, but when Fahl’s

work is considered, showing that developers are often unmotivated in properly updating their

applications, this seems an ineffectual solution.

We differ from this work in that we aren’t looking for TLS library failings specifically,

but only use them as motivations for simpler TLS handling. We are also interested in correct

TLS library usage and how this can continue to be handled by developers through a simpler

API, or how it should be moved to system administrator control.

2.2 TLS library replacements

Amour et al. created libtlssep [4], which provides a simple certificate validation API by

creating a decorator for normal socket and TLS communication that focuses on proper name

verification and safe default behaviors. They were able to limit the API to 11 function

calls that closely mimic normal POSIX socket calls. They were able to show that current

applications using standard TLS libraries can be ported over with negligible performance

degradation. Fedora provides a global configuration file that allows developers to defer

selection of cipher-suites, cipher-suite parameters, TLS version, and whether to perform

secure renegotiations to the system-wide settings [21].

Another approach was developed by Certshim [5], which seeks to enforce correct

certificate verification by wrapping dynamically-linked security libraries and implementing

proper verification handling before returning control to the application. TrustBase [24],

improves on this approach by providing a kernel module that inspects all network traffic to

identify TLS connections and perform proper certificate validation independent of application

5

www.manaraa.com

logic. Trustbase also allows for a direct verification API that application developers can call

to perform certificate verification for them.

As certificate validation has been a main failure for developers, it is unsurprising this

has been the focus of most work in this area. The push by Fedora to modify OpenSSL and

GNUTLS to allow a system-wide configuration of certain security decisions is most closely

related to our work. This still requires developers to actively adopt this model and still leaves

developers with the burden of using TLS-specific libraries. To the best of our knowledge, no

work in this area has taken into consideration current usage of the API to discuss what TLS

functionality should be provided to the developers, nor provide a discussion of whether a

system administrator should instead be in control of this functionality. Nor has any work

examined how applications use TLS libraries in a holistic approach.

2.3 API Mining

Work assessing APIs is focused on understanding complex and poorly documented APIs to

allow developers to learn from other developer’s usage. It usually focuses on learning how

other developers have used the API and extracting useful information. Generally, the field

of mining software repositories [18] seeks to understand changes in software and libraries

and what that means for new changes. Most work in this area is to provide developers with

examples and understanding of API usage when documentation is poor [3, 12, 29]. There is

some work in developing simpler APIs by analyzing API usage to find frequent sequences or

call patterns that can be abstracted [27]. In analyzing a TLS API, however, there are specific

security guarantees to consider.

In contrast with this body of work, we hypothesize that the OpenSSL API should

be simplified by wrapping it within the POSIX API and seek to discover how that can be

accomplished. While applying this previous work to simplify the API could prove useful,

we believe the POSIX API is already in a good position to take this role as application

6

www.manaraa.com

programmers already need to understand this API. Thus we seek to understand how the

OpenSSL API could instead be provided within the simpler POSIX API.

7

www.manaraa.com

Chapter 3

Background

3.1 TLS/SSL

Transport Layer Security (TLS) originally was called Secure Socket Layer (SSL). SSL advanced

through three versions, and then was named to TLS after version 3. Because of this, the

terms SSL and TLS are often used interchangeably. TLS provides secure communication

by establishing cryptographic primitives between a server and client through a handshake

protocol. Simply speaking, a client connects to a server expressing the TLS protocol versions

and what cryptography algorithms it wishes to use, to provide confidentiality and integrity

to the connection. This “Cipher-Suite” selection usually involves authenticating the server

through the use of certificates and the Certificate Authority public-key infrastructure. The

Server responds with its certificate, the selected protocol version, ciphers and optionally

requests client authentication. The appropriate cryptography primitives are generated through

data sent in this exchange and both sides inform the other that they will now be encrypting

all future data. Because TLS was designed to be customizable and extensible, there are

numerous TLS extensions that can be added to this handshake. In order to support the

flexibility provided by TLS, TLS libraries often present large and complex APIs to developers

to work with.

3.2 OpenSSL

OpenSSL is one such library that is arguably the most popular. It allows applications

developers to create SSL structures, which can then be customized to select which TLS

8

www.manaraa.com

versions, extensions, private keys, certificates, or cipher suites to use. Due to presumed

application requirements, OpenSSL provides access to these SSL structures directly, or

through various other interfaces. One such popular interface is the SSL CTX or SSL context.

This interface allows an application to configure one context from which to create multiple

SSL structures, which can then be further customized. When a connection is established

this is then referred to as an SSL session, because it contains the actual information needed

to secure the particular connection. OpenSSL also provides access directly to individual

connections through a session structure. In total there are three different API call layers that

a developer can access, SSL CTX which are used to configure TLS parameters for multiple

SSL structures, which in turn configure multiple SSL SESSIONs, which configure an individual

connection. There is a fourth special case set of API calls SSL CONF CTX whose purpose is to

configure an SSL CTX through command-line options.

OpenSSL can also be used as a general purpose cryptography library, so it provides two

main shared object libraries to use, “libcrypto” and “libssl”. Because we are only concerned

with TLS usage, our analysis focuses on the “libssl” object file.

3.3 Secure Socket API

We stipulate that developers should be relieved of the burden of security, thus freeing them

to focus entirely on the unique functionality that their applications provide. Likewise, the

operating system and system administrators should be empowered to easily control and

customize the secure connections on their machines. This shift is not without precedent. Most

operating systems already offer critical services to applications to reduce code redundancy

and to ensure that the services are run in a manner that does not threaten system stability

or security. For example, application developers on Linux and Windows are not expected to

write their own TCP implementation for networking applications or to implement their own

file system functionality when writing to a file. Fedora led an effort to create a system-wide

“CryptoPolicy” configuration file [21]. Through changes in OpenSSL and GNUTLS, this

9

www.manaraa.com

configuration file allows developers to defer certain security decisions to administrators.

In line with this precedent, and with the problems with developer security competence

and administrator control in mind, we seek to establish all of TLS as an operating system

controlled service.

In this paper we evaluate the practicality of this Secure Socket API (SSA), a minimalist

TLS API that reduces contemporary security APIs to the POSIX socket API. Not only does

this seem to be the original goal of secure network programming [28], this interface allows

network application developers to use an interface with which they are already familiar, all

while allowing flexible administrator control.

10

www.manaraa.com

Chapter 4

Methodology

The following methodology was undertaken as a means to analyze the OpenSSL library

to inform its port to the SSA. It is also presented here as generic guidelines for others seeking

to reproduce or extend our work to other security libraries such as GnuTLS or JavaSE.

1. Extract the exported symbols of the API.

2. Manually analyze the documentation of the API for each symbol that was exported.

3. Categorize each symbol with related symbols for further analysis. This allows the

analysis to focus on specific security considerations in the context of their affiliated

functions. This also prevents looking further into inconsequential API calls (e.g. new,

free, read, write), which are trivially wrapped by the POSIX API.

4. Gather a collection of source code packages that depend on the security library under

analysis.

5. Create dependence and flow graphs for each package gathered.

6. For each category of symbols, analyze usage of the symbols with the category using

graphs from the previous step:

(a) Determine what use cases a developer has for the employ of the feature cumulatively

expressed by the category.

(b) Analyze the usage of functions in the category to gain insight into developer needs,

developer mistakes, and augment the set of use cases derived from the previous

step.

11

www.manaraa.com

(c) Make recommendations for inclusion or exclusion in the SSA. Since the SSA relies

upon simple key-value settings using getsockopt and setsockopt, any included

SSA feature should contain a compelling motivation and eliminate redundant

functionality exported by the original API.

We now cover each of these steps in detail, as they were undertaken in our analysis of

OpenSSL. Due to computational and manual time constraints we limited our analysis to a

single popular TLS library, OpenSSL, and its uses within Ubuntu’s standard repository of

packages [2].

4.1 Extracting Symbols

To extract the OpenSSL TLS API symbols we used the GNU tool nm to extract defined

symbols in the libssl1.0.0 shared library. We then recursively used the GNU tool grep

to augment this list with any macros that are defined using one of these extracted symbols

within OpenSSL’s source code header files.

4.2 API Documentation Analysis

Symbol extraction yielded 507 symbols in the OpenSSL TLS API. We assessed each of

these symbols manually with their corresponding official API documentation to determine

their nature and purpose. Symbols which had no corresponding official documentation were

categorized by manual analysis of their use within dependent packages, and using third-party

documentation where available.

4.3 Categorization of Symbols

We utilized conventional qualitative analysis to categorize each of these functions. The

derived categories correspond to the TLS protocol itself: Version selection, Extension man-

agement, Certificate/PrivateKey management, Cipher suite selection, Session management,

12

www.manaraa.com

and Certificate/Key validation. Five additional categories were created to include symbols

outside this context: Configuration, Allocation, Connection management, Instrumentation,

and Miscellaneous. The Configuration category covers library-specific function calls. For

OpenSSL this category contains functions for workarounds for various bugs identified when

interacting with different TLS implementations, but also provides access to disabling security

critical extensions that are implicitly used by the library. The Allocation category covers the

memory management functions such as init and free methods. The Connection management

category encompasses all symbols that translate easily to the POSIX socket API, such as

SSL read. The Instrumentation category covers function calls that provide debugging or

informational output.

4.4 Source Code Collection

Using the package manager Aptitude we employed the rdepends tool to find all packages that

directly depend on the libssl1.0.0 shared object provided by OpenSSL, which corresponded

to the OpenSSL version 1.0.2, which was Ubuntu’s default at the time of analysis.

4.5 Graph Generation

To compute the necessary control and dependence graphs on the large collection of source

code we used the Joern tool [30].

4.5.1 Joern

Joern uses a “fuzzy parser for C/C++ based on the concept of island grammar”. This fuzzy

parser sacrifices accuracy to allow larger amounts of code to be analyzed and alleviate the

need to have code that compiles. This is in contrast to other tools which we attempted to

use that are more feature-rich and accurate, but computationally intractable to run on our

dataset. Since many other static analysis tools hook a compiler’s symbolic representation of

a program, they allow for a more accurate trace of control and data dependencies, especially

13

www.manaraa.com

with respect to pointer analysis. Our experiences with these other tools are cataloged in

Section 6.

From the parser output Joern generates code property graphs which combines infor-

mation from abstract syntax trees, control flow graphs, and program dependence graphs.

The abstract syntax tree allows us to match API symbols to actual lines in source code. The

control flow graphs enable analysis of the order of API symbol usage and augment Joern’s

fuzzy parsing by insuring output data dependencies precede API calls. Data dependence

graphs allow us to analyze API parameter values and return value usage. It also provides

control dependencies, which allows us to quickly assess whether given variables are utilized

in program branching.

4.6 Symbol Analysis

We use Python’s igraph package to perform appropriate queries on the output of Joern. For

each API call we extract various properties which are then used to find relevant behaviors based

on our analysis of the API’s documentation. First, we find every graph node corresponding

to an API function call. We then extract all control flow predecessors and dependents. This

allows us to check, for example, if SSL get verify result is not called in conjunction with

SSL get peer certificate, which is a violation of the documentation requirements. We

only use control flow rather than control dependence analysis here due to empirical results

showing it to be more accurate with Joern’s parsing. We then find every parameter used by

these calls and trace all data dependencies. This includes extracting Joern’s rudimentary

statement understanding for these dependencies. This allows us for example, to find data

dependencies that are themselves assignment expressions and recursively trace those data

dependencies as well. We then ensure each of these dependencies is a control flow predecessor.

Ideally we would ensure there existed a path between the data dependence and call that

didn’t pass through any other data dependency, however for nontrivial graphs this became

an intractable problem. We then perform a similar extraction for return values, performing

14

www.manaraa.com

similar recursive dependency checks. We also extract the Joern statement type that is assigned

to the call, which allows us to determine how the function call is used in the source code

context. This is part of our return value analysis, because Joern doesn’t parse a non-variable

assigned call as having a return value, which is frequent behavior in C and C++.

4.7 Synthesis and Recommendations

The data collected from the previous steps enabled us to quickly assess how developers use

OpenSSL. In conjunction with the official documentation, we were able to synthesize a holistic

understanding of the salient features of OpenSSL, and how its individual functions can be

condensed into a set that resembled the POSIX socket API. Our exploration of each symbol

category, as well as our recommendations for feature inclusion to the SSA, are outlined in

Section 5.3.

4.8 Limitations

Joern limits our analysis by sacrificing accuracy for speed, which allows us to analyze a greater

number of packages but at the risk of omitting some uses of API symbols and dependencies.

Joern does not evaluate preprocessor directives, so it’s possible that OpenSSL function calls

are hidden through an application’s use of macros or other directives, which can sometimes be

quite complex. This also limits analysis as it is possible to change almost the entirety of the

program through preprocessor directives. For example, the package ftpd-ssl surrounds some

function calls with #if 0, which would prevent anything until the #endif macro from being

included in compilation. Joern also only analyzes data and control within functions, which

prohibits the analysis of interactions with global variables or attempting to trace the origin

of local parameter values. As a trivial example, if a function my func calls SSL new(param),

but param is itself a parameter passed to my func, Joern will be unable to determine param’s

value. In practice we found it rare that OpenSSL dependencies extend beyond function

boundaries, and in cases where they do we attempted to manually analyze the source file

15

www.manaraa.com

in question. We also avoid call ordering analysis, as these often do occur beyond function

boundaries, and limit conclusions based solely on existence of these function calls within

a program. For example, as discussed in Section 5.3.1.2 the use of SSLv23 allows for the

use of SSL version 3 unless a call is made to set options with the SSLv3 OP NO SSLv3 or

SSL OP NO TLSv1 option, rather than insuring that this option is set before a connection

is actually made, we only analyze if this call is ever made. This still leaves the potential

that a package uses another library which in turn calls the appropriate OpenSSL call. Our

analysis still constitutes a significant manual effort, because more complicated analyses, such

as symbolic execution or accounting for preprocessor directives, were not conducted.

Furthermore, some packages may simply provide a wrapper API around OpenSSL for

other packages to use. For example, it is conceivable that a library provides proper certificate

verification under its own API, and applications utilizing that API would not be counted

in our analysis of OpenSSL-utilizing applications. Thus we may be underestimating the

individual usage counts of OpenSSL symbols. This would require more complex tools or

significant manual effort to detect, and we consider this analysis beyond the scope of our

work.

In addition, the practical use of dependencies between packages in Aptitude allow

package maintainers to infer the existence of OpenSSL by explicitly depending on another

package that depends on OpenSSL. Software can then directly interact with OpenSSL yet

not appear on direct dependency lists of OpenSSL. While the rdepends tool allows for this

recursive dependency tracing, analyzing the resultant thousands of packages was beyond our

means.

16

www.manaraa.com

Chapter 5

Results

In this chapter we report on salient results from our exploration of the OpenSSL

API. We report on the details of our data collection, documentation analysis, and category

exploration with accompanying recommendations for incorporating OpenSSL into the Secure

Socket API (SSA), which is based on the POSIX socket API.

5.1 Data Collection

Using Aptitude’s rdepends tool we found 882 software packages that depend on libssl,

OpenSSL’s library for TLS functionality. Among these 882 software packages there are

687 unique source code repositories, after removal of various Linux header repositories that

differed in version. From these 687 repositories, we removed OpenSSL itself and non-C/C++

packages and were left with 410 software packages. Using the GNU nm tool we extracted 323

unique symbols from version 1.0.0 of libssl, which was the latest version for Ubuntu at the

time of writing. Using these 323 symbols we recursively gathered 181 macros directly from

OpenSSL’s source code. This left us with a total of 504 unique TLS API calls.

Using Joern to parse the 410 source code repositories, we found 165 of these API calls

were unused by any software package. We found a total of 1,438 C/C++ source files that use

any OpenSSL TLS API function, of which only 860 files were unique. A total of 24,124 API

calls to the OpenSSL TLS API are made from the 1,438 files.

17

www.manaraa.com

5.2 API Documentation Analysis

Because OpenSSL allows configuration of a TLS connection at different levels, discussed in

Section 3.2, we found that the API was fairly redundant. In total there are 93 API calls

that contain an equivalent call at another level. In general the SSL CTX-related calls are used

the most, over SSL- and SSL SESSION-related calls. This suggests that TLS is usually setup

application-wide rather than by developers configuring individual connections.

5.3 Category Analysis

Category No. of Symbols No. of Calls

TLS Functionality

Version selection 29 1306

Extension management 68 597

Cipher suite selection 39 1467

Certificate/PrivateKey management 73 2083

Certificate/Key validation 51 3164

Session management 61 1155

Configuration 19 1337

Other

Allocation 33 6087

Connection management 41 5228

Miscellaneous 64 1468

Instrumentation 26 232

Table 5.2: Breakdown of OpenSSL’s libssl symbols by purpose. Many categories deal with
management of the TLS protocol itself, but some others are concerned with allocation of
objects and configuration of the library itself

Through conventional quantitative analysis we categorized each of the symbols into

the categories shown in Table 5.2. Table 5.2 presents the overview of our category breakdown,

including the number of symbols, or API calls, per category and total number of calls to a

symbol in this category. Appendix A presents the full category to symbol breakdown and

Appendix B presents the breakdown of each API’s number of calls.

18

www.manaraa.com

For each category in the “TLS Functionality” section of Table 5.2 we first present

possible use cases for which a developer needs to have control of this functionality. We then

analyze each function’s usage within the category for how developers actually use it. This

often takes the form of tracing data dependencies of parameters to analyze what values are

normally passed to it and tracing return values for how any results are handled. Based on

the analyzed usage we summarize our recommendation regarding whether this functionality

should remain with application developers or be handled differently and explain our reasoning

for this recommendation.

For each category in the “Other” section we simply present our recommendations for

the handling of these functions because their usage is based on implementation details of the

OpenSSL library and aren’t specific to the TLS protocol.

5.3.1 Version selection

When creating a TLS connection, application developers must specify to OpenSSL the desired

protocol version to utilize by selecting a corresponding SSL METHOD. Normally this is selected

by calling the appropriate * method API function, prepended with a shortened version name

(e.g., TLSv1) and whether it is a generic, client, or server socket. If a generic method

call is used, whether the socket should behave as a server or client must be specified later

through calls to SSL set connect state, SSL set accept state, or inferred from direct

calls to SSL accept or SSL connect. These method selections also specify the underlying

transport protocol to use (TLS for TCP, DTLS for UDP). Currently there are eight different

SSL METHOD calls, excluding differentiating client, server, and generic distinctions: SSLv23,

TLSv1 2, TLSv1 1, TLSv1, SSLv3, SSLv2, DTLS, DTLSv1 2, DTLSv1.

SSLv23 and DTLS are “version-flexible”, meaning they will implement the highest

version of the protocol that can be agreed upon between the server and client. The supported

versions, however, can also be further reduced through calls to SSL CTX set options or

19

www.manaraa.com

Version method client method server method Total

SSLv23 * 114 186 158 458
TLSv1 2 * 14 26 20 60
TLSv1 1 * 9 24 19 52
TLSv1 * 39 72 48 159
SSLv3 * 13 42 28 83
DTLS * 1 0 0 1
DTLSv1 2 * 1 1 1 3
DTLSv1 * 12 10 9 31

Table 5.3: Version Method usage

SSL set options. While SSLv2 and SSLv3 have been shown to be insecure, only SSLv2 has

been disabled by default when using these methods [22].

5.3.1.1 Use Cases

To maintain compatibility between a server and clients, it may be necessary to specify a

particular protocol version so that communication can be realized when a new protocol is

released. In addition, security has increasingly become a legal issue. Applications may want

fine-grained controls over the security guarantees of their products. As such, developers may

not wish to upgrade to new protocol versions that haven’t seemingly undergone the same

scrutiny of previous versions.

5.3.1.2 Usage Analysis

Table 5.3 shows the breakdown of each TLS version usage. As Table 5.3 shows, SSLv23

methods are the most commonly used, which default to the latest protocol and allow backwards

comparability with many older versions. While OpenSSL documentation recommends use of

these methods and subsequent limitation of protocol selection through the * set options

API, hundreds of packages still use the version specific method selections. TLSv1 methods,

which restrict the protocol version to only TLS 1.0, are the next most common. SSLv3 and

SSLv2 have been proven insecure and are no longer recommended for use. However, 83

20

www.manaraa.com

packages directly use these methods and 98 additional packages possibly accept these insecure

connections through using SSLv23 without setting the SSL OP NO SSLv3 option through the

set options API calls. This indicates some real-world developer neglect, resulting in serious

security vulnerabilities.

Because other TLS version methods contain both the major and minor versions (e.g.

TLSv1 1 and TLSv1 2), it is unclear whether developers incorrectly assume that TLSv1 actually

supports any TLS minor versions as well. Anecdotally, we believe this to be the case, as

comments in some packages project this misunderstanding. For example, the package balsa

has a comment justifying the use of the TLSv1 method over SSLv23: “we could also enable

SSLv3 but it doe (sic) not work very well with all servers.” This seems to communicate

the misunderstanding that the only difference between SSLv23 and TLSv1 is that SSLv23

enables SSL 3.0. In fact SSLv23 allows for negotiation of TLS 1.1 and 1.2 while TLSv1 only

allows TLS 1.0. This has also been misunderstood by developers asking questions on help

websites [20]. DTLSv1 is also used more than the version-flexible DTLS, perhaps for similar

reasons.

Through manual inspection we found some packages specify their desired TLS version

through compile-time checks, which merely select the versions included with the local OpenSSL

installation, or directly by the administrator through specification of compile-time parameters.

These practices indicate that application developers are already attempting to defer their

selection of TLS versions to the requirements of the system administrator.

To transfer any actual application data, OpenSSL requires that the programmer

specify the connection role as a server or a client. Several functions provide this ability,

some of which combine specifying the client or server nature of a connection in tandem with

the TLS version (e.g., SSLv23 client method). Optionally, developers can also specify this

implicitly (e.g., SSL connect indicates a client role) and explicitly as a standalone function

(e.g., SSL set connect state). Specifying these roles independently, in tandem with other

settings, or implicitly all have the same effect and thus represent redundancy in OpenSSL.

21

www.manaraa.com

5.3.1.3 Recommendations

We recommend that the SSA use the SSLv23 method calls and by default remove all versions

of TLS that are known to be insecure, through the use of option flags (e.g., SSL OP NO SSLv3).

Our results indicate that 54% of calls to version method functions are those that

default to the latest TLS version supported by the system, but also support backwards

compatibility with lower versions supported by the system, for connections with outdated

remote hosts. The OpenSSL documentation indicates that these methods should be used [11].

Of calls that specify a specific TLS version to use, only 16% utilize the latest version of TLS

(1.2), which is 7% of all calls. A substantial portion of calls (19%) also directly specify the

use of TLS 1.0 only through the use of TLSv1 method options. This particular version is old

and slated for end of life in June 2018. Our analysis of source code comments surrounding

the use of this version suggest that developers erroneously believe it selects the latest TLS

version. The use of preprocessor macros to determine version selection also indicates that

developers already wish this burden to be placed on system administrators. With all of

these factors in mind, it becomes clear that overwhelmingly developers want the system to

select the version for them, or are adopting lower versions that should not be used anyway.

We therefore recommend that the SSA select the latest TLS versions by default, and that

deviation from this be controlled by the system administrator through configuration. System

Administrators should also be able to configure their SSA to disable other protocol versions,

or even enable experimental versions, such as TLS 1.3, as desired. If necessary, developers can

request specific protocol versions through the setsockopt call, which will return an errno if

that version has been disabled. Moving this control to system administrators empowers them

to secure their machines independent of application logic.

5.3.2 Extension management

TLS extensions are used for three main purposes:

• Adding additional security

22

www.manaraa.com

Extension Description

SNI
Server Name Indication allows a client to express to which hostname it
is trying to connect, allowing servers to host more than one hostname
per port

ALPN/NPN

Application Layer Protocol Negotiation allows application layer proto-
cols to perform handshake features within TLS for improved speed,
currently only HTTP 2.0 is supported. This updates the Next Protocol
Negotiation (NPN) extension.

OCSP Online Certificate Status Protocol provides information about the
validity of the certificate

Session Tickets Session Tickets allow for clients to cache the session information to be
returned to the server for quicker connection times

SRTP Secure Real-time Transport Protocol is used to secure the RTP protocol

SRP Secure Remote Password is a way to provide mutual authentication
through a traditional password mechanism over TLS

Heartbeats Heartbeats are used to keep long-running connections open

PRF
Psuedo Random Function extension was created to support U.S. Gov-
ernment requirements in certain applications to maintain properties
within the TLS key material

Serverinfo The serverinfo calls allow for arbitrary server extensions to be added

Supported Curves The supported curves extension is used to select parameters for use in
Elliptic Curve Cryptography

Table 5.5: Explicit TLS extensions implemented by OpenSSL.

• Fixing discovered vulnerabilities

• Performance improvements

OpenSSL implicitly uses some TLS extensions, such as secure renegotiation, and provides

developer access to the utilization of ten different TLS extensions explicitly along with a

mechanism to add custom (or unsupported) extensions. It also exports control over some

implicitly used extensions through the options API. The aforementioned ten extensions are

outlined in Table 5.5.

23

www.manaraa.com

Extension Client Usage Server Usage Total

SNI 68 44 77
NPN - - 31
ALPN 18 28 29
OCSP 19 8 19
Session Ticket 1 15 15
SRTP 9 9 9
SRP 3 2 3
custom 0 1 1
Heartbeats 0 0 0
PRF 0 0 0
Serverinfo 0 0 0
Supported Curves 0 0 0

Table 5.6: Extension usage

5.3.2.1 Use Cases

Many Extensions, such as SNI, require application information and as such require application

participation for their use. Removal of the secure renegotiation extension allows for backwards

compatibility for peers who do not support this extension.

5.3.2.2 Usage Analysis

As shown in Table 5.6, the most utilized extension is Server Name Indication, present in 19%

of applications. NPN and its successor ALPN follow, with their combined use found in 15%

of applications. OCSP here and elsewhere is utilized by a handful of applications (19). The

remaining extensions are used by very few applications (less than 10) and Heartbeats, PRF,

Serverinfo, and Supported Curves are used by none of the applications in our set.

SSL CTX set alpn protos and SSL set alpn protos return 0 on success, which re-

verses traditional return code conventions of OpenSSL. Because of this, at least five packages

incorrectly interpret their return codes. Thirty-one packages still use NPN even when it has

been updated by ALPN. There is only one instance of custom extension use, which is by

the haproxy package to provide a certificate time stamp. Two extensions have an ability to

provide a callback function for their handling (SRP and SNI).

24

www.manaraa.com

5.3.2.3 Recommendations

Based on their popularity, we recommend that SNI, ALPN, OCSP, Session Ticket, STRP,

and SRP be included in the SSA, with the others left out for now, due to lack of interest.

Most of these extensions are get and set calls that pass in data, which trivially translates

to setsockopt and getsockopt calls. Two extensions SNI and SRP allow for a callback

interface, which we recommend be eliminated as part of the API.

SNI allows a server to correctly respond to client TLS connection requests with the

appropriate certificates and configuration if hosting multiple entities. It also allows a client

to perform proper certificate verification. The callback interface, which we recommend be

eliminated, is only used for server configuration. This is because developers can specify through

setsockopt the list of certificates and hostnames that are supported. The SSA can then use

this list to subsequently negotiate the handshake appropriately. Any additional configuration

needed by the developer can then be performed after the handshake by developers calling

getsockopt to retrieve the negotiated hostname. For clients, recent work has already discussed

implementation details of how to handle this in an application-independent manner [5, 24].

The hostname verification can then take place in isolation from the application as discussed

in Section 5.3.5.3.

Since OCSP support is a certificate validation extension, we recommend that it be

under the control of the administrator configuration and enabled by default. OCSP could more

easily receive adoption if placed under control of the system administrator. The argument

against inclusion of this extension is that it increases connection latency, due to the extra time

required to query an OCSP responder. However, security-performance tradeoffs like these

are best decided by administrators because they are most familiar with the requirements of

the environment in which their machines operate. Each of the eight server packages read

OCSP information from a configuration file. Under administrator control, this information

could be centralized to allow a server to associate OCSP data for any certificate it manages,

and any server application that wishes to use that certificate will automatically provide

25

www.manaraa.com

OCSP information to its clients. For client applications, this extension could be enabled

depending on the system administrators needs. OCSP pinning, or whether this extension

must be present, could then be set by the application developer through setsockopt.

Session Tickets are rather simple for servers to implement as they only need to supply

an encryption key to use. This can easily be set as either a system-wide option or application

option with setsockopt. Providing it as a system wide key allows administrators greater

control over the security of the connections they trust. Clients, however, have been slow to

adopt this extension, most likely because of the overhead of writing an appropriate caching

mechanism. Allowing the OS to handle this caching then alleviates application responsibility

and allows system administrators to specify how long they trust these crypto primitives to

be used.

SRTP OpenSSL does not implement SRTP itself or its corresponding RFC, and

instead merely provides data payloads for the extension. As a result, applications using this

functionality have to implement the logic themselves. However, the SSA could enable this

same level of support very easily through setsockopt and getsetsockopt.

SRP can either be configured system-wide, where the SSA can thus perform validation

independently of the developer, or provided by setsockopt for the username/password pairs

to then be validated. Because this is only used by the Apache packages, it is unclear which is

the best way forward. This would also eliminate the need for the callback interface.

The remaining extensions are used by no applications. Given our goal to simplify the

developer API in conjunction with this lack of use, we recommend that the other extensions

not be present in the SSA.

5.3.3 Session management

Establishing the cryptographic primitives through the TLS handshake requires multiple round

trips, which can be relatively expensive for latency-sensitive applications.. Because of this,

a TLS session can be saved by servers and resumed during a future reconnect by clients.

26

www.manaraa.com

Extension Total usage

SSL SESS CACHE OFF 75
SSL SESS CACHE SERVER 44
SSL SESS CACHE BOTH 26
SSL SESS CACHE NO AUTO CLEAR 23
SSL SESS CACHE NO INTERNAL 14
SSL SESS CACHE NO INTERNAL LOOKUP 10
SSL SESS CACHE CLIENT 9
SSL SESS CACHE NO INTERNAL STORE 8

Table 5.7: Most used cache options

Storing the session means that the key material generated during the initial handshake does

not have to be regenerated. While OpenSSL provides a default internal mechanism for this, it

also exposes an API to allow developers to perform their own caching, or manipulate/monitor

the internal caching. This allows applications to optimize caching mechanisms specific to

their application.

5.3.3.1 Use Cases

The session handling API calls are almost exclusively used for customizing caching behavior.

It is also possible to attach application data onto the SSL SESSION to be saved and retrieved

in the cache.

5.3.3.2 Usage Analysis

The default caching functionality is just SSL SESS CACHE SERVER, which the majority of

applications keep. There are 163 calls to change the cache mode from 110 applications.

The individual options selected are shown in Table 5.7. As the options are supplied to

the API as a bitmask, 19 of those 163 calls “change” it to the default by only setting

SSL SESS CACHE SERVER. 75 disable the cache completely and manual analysis of source code

revealed, based on developer comments, that at least some packages do this in conjunction

with disabling renegotiations. 31 packages provide callbacks for external caching mechanisms.

27

www.manaraa.com

5.3.3.3 Recommendations

We recommend providing the same caching option selection through the setsockopt call

and eliminating custom caching support.

Implementing the caching mode flags is trivial with the setsockopt call and actually

can improve the SSL SESS CACHE CLIENT by allowing the SSA to have the necessary details

of the connection to select the appropriate cached session.

73% of analyzed applications do not make any changes to the default caching mech-

anisms of OpenSSL. Within the other 27%, the most common modification is to simply

turn caching off entirely. The majority of the remaining uses are to turn off individual

features or retain default settings. There are 31 packages that utilize an OpenSSL API that

allows custom session cache handling via callback registration. Given the small population

of applications using custom session management, and the difficulties involved in providing

callbacks via the POSIX socket API, we recommend that the SSA avoid custom session cache

management by applications. Because this may not be an acceptable long-term solution, we

give a discussion of the complexities of callbacks, cache management, and potential pathways

forward in Chapter 7

5.3.4 Certificate/PrivateKey management

TLS connections employ certificates and keys when performing the TLS handshake. Thus

applications utilize various functions from OpenSSL to load, generate, use, and inspect

certificates and keys.

5.3.4.1 Use Cases

Physical machines rarely represent a singular identity. As such, applications must select an

appropriate identity to present to connected endpoints, through keys and certificates. Servers

often require a certificate and private key to be specified by the user, or generate these in

28

www.manaraa.com

some automated form. Loading these data from file or memory, generating them, verifying

their potential uses, and other operations are performed using this group of API functionality.

5.3.4.2 Usage Analysis

Of the 73 API functions used for managing keys and certificates shown in Appendix A, 38

(54%) are unused. Another 17 (23%) are used by less than five software packages. The

remaining functions are used heavily, with a combined call count of 2033 from hundreds of

distinct packages. Most of these are used to either specify certificate or private key for the

TLS connection. However, one is used to verify that a given private key corresponds to a

particular certificate, and two are used to provide decryption passphrases to unlock private

keys.

The OpenSSL documentation states that SSL CTX use certificate chain file is

the recommended way to load certificates, as it provides the union of functionality for related

calls. However, 120 packages continue to use the SSL * use certificate calls. Because

these functions load certificates from files, and as we do not perform symbolic execution,

we are unable to determine whether it is common practice to store the leaf certificate and

certificate chain separately. We are also unable to analyze whether the use RSAPrivateKey

files are used to selectively use an RSA key within a file of multiple different kind of keys, or

simply to load equivalently as if the use PrivateKey calls were used.

5.3.4.3 Recommendations

Given that the majority of supplied functions go unused by any package, and that the over-

whelming majority of uses are for specifying the pathnames or bytes of certificates and private

keys, we recommend that corresponding setsockopt options be created for supplying private

key and certificate data. The certificate assignment option should take both chains and leaf cer-

tificates as input, just as the OpenSSL-recommended SSL CTX use certificate chain file

function. The SSA should determine on behalf of the user whether the supplied values are

29

www.manaraa.com

paths or encoded certificates, and support only PEM encoding since that is the de facto

standard. Additionally, the SSA can check whether a supplied key is valid for supplied

certificates on behalf of the developer, returning an error code that indicates this. These

steps further simplify the API and relieve developers of the burden of implementing common

functionality.

For certificate handling OpenSSL’s documentation recommends simply using the

SSL CTX use certificate chain file, and so we recommend that the implementation of

the SSA use this call, and the equivalent SSL CTX use PrivateKey file, and provide that

functionality through setsockopt calls.

5.3.5 Certificate/Key validation

Under TLS, failure to properly validate a certificate presented by the other endpoint eliminates

all authentication guarantees, subjecting the connection to potential MitM attacks. This

topic has been the primarily focus of study for the evaluation of failures in TLS library use.

Much of this work has found that applications often misuse validation functions or omit their

use entirely. OpenSSL provides a default verification process that can be, often inadvertently,

ignored, usually for the purpose of performing custom application-specific verification.

5.3.5.1 Use Cases

The typical client use case for validation of certificates is to validate the certificate sent by

the server in the TLS handshake. It is common for developers to allow OpenSSL to perform

certificate signing verification and other checks but perform hostname validation themselves,

because the functions that perform this are not well known to developers. A typical server use

case for validation of certificates is in the validation of client certificates and supplying a list

of trusted certificate authorities to the client so that it may select an appropriate certificate

to send. In addition, an application may wish to “hard-code” a certificate and ensure that the

one received through the TLS handshake is exactly the same, as a means of strict validation.

30

www.manaraa.com

5.3.5.2 Usage Analysis

Immediately we note that 11 packages turn off validation entirely using SSL VERIFY NONE

and specifying no callback for custom validation. Five of these packages include server

behavior, so such action may be benign as this disables TLS client authentication, which

most servers perform at the application layer using a different mechanism (e.g., login forms).

However, the remaining six perform no verification whatsoever, indicating the presence of

a man-in-the-middle vulnerability. A total of 7 packages use SSL get verify result, but

neglect to ensure SSL get peer certificate returns a valid certificate. Neglecting this call

is documented as a bug in the OpenSSL documentation, as receiving no certificate results in

a success return value.

5.3.5.3 Recommendations

Certificate verification is crucial to TLS security and has been shown to have many problems

in practice under existing TLS library use. Even if developers have a reason for custom

verification they often perform it improperly. Recent work has described how to handle

verification in an application-independent manner and under the control of administrator

preferences [5, 24]. We therefore recommend that applications leave validation to the SSA,

which defers to administrator preferences and secure defaults. We make this suggestion

with one caveat: if an application would like to validate a certificate based on a hard-coded

one, then it can supply that certificate to the SSA via setsockopt. This allows the SSA

to maintain absolute control of validation, while also having the option of granting custom

validation to applications, if the administrator allows it, by selecting to honor the request to

validate using the provided certificate or not.

31

www.manaraa.com

5.3.6 Cipher suite selection

A cipher suite is a set of cryptographic algorithms to be used by the TLS connection. These

algorithms serve as the basis of the security guarantees of confidentiality, authentication, and

integrity for the TLS connection.

5.3.6.1 Use Cases

Infamously, and currently controversially, there are numerous legal considerations when

deciding appropriate ciphersuites. Previously the U.S. government mandated that any

encryption over a certain key length be export restricted, and currently world governments

have called for weakened encryption for all apps to aide in monitoring criminal activity.

Applications have also historically borne the burden of legal issues with respect to security

breaches and thus developers and companies have an incentive to ensure sufficient algorithms

and security properties are utilized. For TLS, these issues are largely dependent on cipher

suite selection.

5.3.6.2 Usage Analysis

Our analysis tools limit our ability to trace three of the main ways in which the cipher

list is set: environment variables, configuration files, and from other functions. Automated

analysis is limited to intra-procedural analysis so when the cipher list is passed in as a

function parameter we are unable to trace it backward to find its definition. 208 (51%) of

our studied packages contain code that sets the ciphers used by OpenSSL directly using

the * set cipher list family of functions. From the 334 calls to the * set cipher list

API calls we were only able to extract the set of ciphers given in Table 5.8. Of note is the

use of eNULL, NULL, COMPLEMENTOFALL, RC4, and MD5. eNULL, NULL and COMPLEMENTOFALL

all enable the “NULL” cipher which offers no encryption. The RC4 and MD5 algorithms are

known to be too vulnerable for use in modern cryptography. This is either unknown to the

developers of these applications, which undermines the security of TLS, or is an option that

32

www.manaraa.com

Cipher Parameter Usage

ALL 11
ADH:@STRENGTH 10
NULL 10
ALL:!LOW:!EXP:!MD5:!MD2 8
ADH 7
aNULL 6
eNULL 4
ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH 4
ALL:COMPLEMENTOFALL 3
HIGH:!EXPORT:!aNULL@STRENGTH 3
ALL:!eNULL:!EXP:!SSLv2:+ADH@STRENGTH 3
HIGH 3
DEFAULT:!EXP:!LOW 2
AES256-GCM-SHA384:AES256-SHA 2
DEFAULT 3
AES128-SHA 2
DEFAULT:!aNULL:!eNULL:!LOW:!EXPORT:!SSLv2:@STRENGTH 2
HIGH:!EXPORT:!aNULL@STRENGTH 2
ALL:!ADH:!LOW:!EXlikP:!MD5:@STRENGTH 1
ALL:!aNULL:!eNULL:!LOW:!EXPORT40:!RC4 1
DEFAULT:!KRB5 1
RC4-MD5 1
EECDH+aRSA+AESGCM:EECDH+aECDSA+AESGCM:EDH+aRSA+AESGCM 1
HIGH:MEDIUM:!RC4:!SRP:!PSK:!RSA:!aNULL@STRENGTH 1
SRP 1
SSLv3:TLSv1:HIGH:!LOW:!MEDIUM:!EXP:!NULL:!aNULL@STRENGTH 1
ALL:!ADH:!LOW:!EXP:!MD5:!RC4:!SHA1:!ECDH:!ECDSA:@STRENGTH 1
ALL:!ADH:!LOW:!EXP:!DES-CBC3-SHA:@STRENGTH 1
eNULL:ALL:!ADH:RC4+RSA:+SSLv2 1

Table 5.8: Cipher Suite choices

the package allows the user to select, such as the package coturn, which provides the ability

to enable these as a commandline argument to allow a “secure” connection with the eNULL

cipher. We next manually analyzed a sample of packages for which we cannot extract exact

cipher suite settings. We found that many retrieve their settings for these functions from

environment variables and configuration files.

33

www.manaraa.com

5.3.6.3 Recommendations

We recommend that cipher suite selection be left to system-wide configuration files such as

those implemented through Fedora’s crypto policy file [21].

Cipher Suite selection is critical to the security guarantees of the TLS connection. The

use of statically assigned values for cipher suites indicated insecure practices by developers,

suggesting a need to have this option controlled by the system. Packages that did not set

these values statically either set them through admin-configurable settings or adopt the

defaults from the OpenSSL installation, thus reinforcing our recommendation that this be a

parameter set by the system and its administrator and not by applications. Another problem

with setting these values statically by the application is that as various algorithms are found

to be vulnerable to attack, static values may not be updated to reflect new secure practice.

However, the SSA could allow applications to disallow the use of specific algorithms through

the use of setsockopt. That is, the SSA could export a restrictive API for cipher suite

selection, but should not export a permissive one.

5.3.7 Configuration

OpenSSL allows for various controls of the internal and external behavior of the library. These

OpenSSL options allow applications to request modifications to TLS connection handling by

the library. Many of these options are workarounds for known bugs when OpenSSL interacts

with remote hosts using a different TLS library implementation. For example, the option

flag SSL OP MICROSOFT BIG SSLV3 BUFFER is used to handle an Internet Explorer violation

of the SSLv3 specification.

Setting OpenSSL modes allows for control of internal library functionality, such as

when internal buffers are released or whether to automatically perform renegotiations.

34

www.manaraa.com

5.3.7.1 Use Cases

OpenSSL’s options mechanism allows for control of miscellaneous features. This includes

workarounds for poor implementations, further limiting TLS protocol selection, or even

removing security extensions that have been deemed necessary.

5.3.7.2 Usage Analysis

Of the calls in this category, 830 (62%) are to two similar functions: SSL set options and

SSL CTX set options. These functions allow applications to employ bug workarounds for

interaction with other TLS implementations and also allow the disabling of certain protocol

use. The top four utilized options shown in Table 5.9 are used to disable vulnerable TLS

features and older versions (compression, SSLv2, and SSLv3), and to enable “all” bug

workarounds.

An additional 337 (25%) of calls to this category utilize various flags for the SSL set mode

and SSL CTX set mode functions. As shown in Table 5.10, 41% set a flag that makes I/O

operations on a socket block if the handshake has not yet completed, 56% set flags that

modify the SSL write function to behave more like write, and 14% use a flag that reduces

the memory footprint of idle TLS connections.

Also present are 32 calls (2%) to functions that change whether or not OpenSSL will

attempt to read as many bytes input as possible during read operations.

Through manual inspection we find that many options are set by conditional pre-

processor macros that are triggered based on compilation arguments, suggesting that many

developers are leaving these decisions to administrators already.

The remaining functions in this category are used to clear and retrieve the settings

described. Despite some of these options and modes “no longer having any effect”, as

described in the OpenSSL documentation, many continue to be used. While this continued

use is harmless, it suggests that despite API changes developers are slow to update their

code.

35

www.manaraa.com

5.3.7.3 Recommendations

Due to discovered attacks against TLS [8, 15] compression has been removed in future TLS

specs and we recommend the SSL OP NO COMPRESSION option always be set. Given that the

uses of this category are primarily bug workarounds and restricting the use of outdated

protocols, and that many of these are already set through compilation flags, we recommend

leaving such configurations to the administrator. Modes and other configuration settings in

this category tend to control subtleties of read and write operations. Under the SSA, I/O

semantics are largely determined by the existing POSIX socket standard and are ignored for

the purposes of this work.

5.3.8 Allocation

There are 33 functions that are called a total of 6,087 times that are responsible for the

assignment, allocation, and deallocation of common TLS objects (e.g. SSL CTX) and various

library globals. Under the POSIX API the only object with which the programmer interacts

is a socket descriptor, and thus this category of OpenSSL TLS functionality has no analog

under the SSA.

5.3.9 Connection management

The connection management category contains functions that perform connection and I/O

operations on sockets. All of these have direct counterparts within the POSIX socket API, or

have combinations of symbols that emulate the behavior, such as SSL connect (connect),

and SSL Peek (recv with MSG PEEK flag). Another example is that of SSL get error, which

when called returns a value similar to errno. These functions are therefore mapped to their

POSIX counterparts, and as such are already trivially present in the SSA.

36

www.manaraa.com

5.3.10 Instrumentation

A group of 26 functions are responsible for providing debug information and statistics for

TLS connection properties. Since all TLS operations are handled by the SSA, such functions

no longer need to be developer-facing.

5.3.11 Miscellaneous

The miscellaneous group contains functions that assign various data structures to others,

extract information from internal data structures, and those that are pending deprecation,

such as functions that interact with compression methods. It also contains some functions

that are used for translating strings from config files and commandline arguments into TLS

context settings. Since all TLS operations are handled by the SSA, such functions no longer

need to be developer-facing.

37

www.manaraa.com

Option Flag Total usage

SSL OP NO SSLv2 271
SSL OP ALL 226
SSL OP NO SSLv3 203
SSL OP NO COMPRESSION 121
SSL OP NO TICKET 95
SSL OP CIPHER SERVER PREFERENCE 78
SSL OP NO TLSv1 1 75
SSL OP NO TLSv1 2 73
SSL OP NO TLSv1 72
SSL OP SINGLE DH USE 72
SSL OP DONT INSERT EMPTY FRAGMENTS 46
SSL OP SINGLE ECDH USE 38
SSL OP NO SESSION RESUMPTION ON RENEGOTIATION 35
SSL OP TLS BLOCK PADDING BUG 25
∼SSL OP DONT INSERT EMPTY FRAGMENTS 32
SSL OP ALLOW UNSAFE LEGACY RENEGOTIATION 9
SSL OP MICROSOFT BIG SSLV3 BUFFER 5
SSL OP MSIE SSLV2 RSA PADDING 5
SSL OP TLS D5 BUG 5
SSL OP COOKIE EXCHANGE 5
SSL OP MICROSOFT SESS ID BUG 5
SSL OP SSLEAY 080 CLIENT DH BUG 5
SSL OP SSLREF2 REUSE CERT TYPE BUG 5
SSL OP NETSCAPE CHALLENGE BUG 5
SSL OP NO SSL MASK 4
SSL OP NO QUERY MTU 3
SSL OP TLS ROLLBACK BUG 3
∼SSL OP NO SSLv3 2
∼SSL OP NO SSLv2 2
SSL OP EPHEMERAL RSA 2
SSL OP SAFARI ECDHE ECDSA BUG 1
SSL MODE RELEASE BUFFERS 1
TLS PROTOCOL SSLv2 1
SSL OP NO DTLSv1 2 1
∼SSL OP ALLOW UNSAFE LEGACY RENEGOTIATION 1
SSL MODE ENABLE PARTIAL WRITE 1
∼SSL OP NETSCAPE REUSE CIPHER CHANGE BUG 1
SSL OP NO DTLSv1 1
∼SSL OP CIPHER SERVER PREFERENCE 1
∼SSL OP NO TLSv1 2 1
∼SSL OP NO TLSv1 1 1
∼SSL OP TLS BLOCK PADDING BUG 1
SSL OP NETSCAPE DEMO CIPHER CHANGE BUG 1

Table 5.9: Individual Options selected

38

www.manaraa.com

Mode Flag Total usage

SSL MODE AUTO RETRY 139
SSL MODE ENABLE PARTIAL WRITE 119
SSL MODE ACCEPT MOVING WRITE BUFFER 79
SSL MODE RELEASE BUFFERS 48
SSL MODE NO AUTO CHAIN 6
SSL MODE SEND FALLBACK SCSV 3
SSL MODE SMALL BUFFERS 2
SSL MODE HANDSHAKE CUTTHROUGH 1

Table 5.10: Individual Modes selected

39

www.manaraa.com

Chapter 6

Failures

The main goals of our project were to be able to trace data and control dependencies

from a set API across a large amount of source code. This generally falls under the term

static analysis, of which there are a multitude of tools with which to work.

Many popular static analysis tools focus on finding specific code vulnerabilities or

potential problematic coding practices. Another set provide simple software metrics. Both

of these static analysis tools were ill-suited for our work as they don’t provide generalized

code understanding for our custom analysis. This left us with a small set of static analysis

frameworks from which we could choose.

The most popular of these, Frama-C, clang, and Code Surfer, all required hooking into

the compiler to process source code. This allows them to do powerful analysis such as pointer

analysis, macro expansion, and even evaluate the preprocessor, all of which would have been

useful in our analysis. Because we were limiting our analysis to open source Ubuntu packages,

we could easily hook into the Debian build commands with which they were designed to be

run. The first problem with these kinds of tools is scalability. These tools could not perform

the level of analysis we required at the scale we required. For instance, when analyzing the

882 software packages under Code Surfer we were unable to complete the lite-configuration

analysis while running it on a 12 core, hyperthreaded, machine with 256 GB of RAM, despite

it being run for a week. This is often due to coarse grained controls over limiting speed

vs. functionality. This is also due to the apparent goal of these tools being to provide

understanding for a single project rather than many. Attempting to analyze many projects

40

www.manaraa.com

is poorly-documented, has an unfriendly interface, and often adversely affects performance.

Even Joern, when analyzing a large set of projects, creates unnecessary graph edges in its

backend database, which resulted in slow-downs when querying the database. To overcome

this, we used Joern to export its code property graphs then built custom tools to parse and

analyze them using python’s igraph library. Of the tools that required compilation of source

code, we found no tool that provided understanding of code removed through preprocessor

directives, nor analysis of preprocessing directives themselves. While this is understandable,

in our case we found that this commonly removed many use cases of the OpenSSL API. Using

Joern allowed us to identify all possible uses of the OpenSSL API, rather than those that

were manifest after compilation.

41

www.manaraa.com

Chapter 7

Future Work

The next logical step in our work would be to apply the recommendations in creating

the SSA. One of the main reasons for suggesting wrapping the functionality into the POSIX

API is that most operating systems already have a set of system calls that implement this

API. This would allow for easy adoption of the SSA in most operating systems. For example,

in Linux this could be accomplished by adding a kernel module to register additional protocols

into the networking structure, which Linux already supports. The actual TLS work can

then be offloaded to a userspace application that utilizes a traditional TLS library. Then

based on the recommendations from Section 5 functionality can be provided to developers

through the setsockopt and getsockopt system calls, and to administrators through global,

or application specific, configuration files. The format of these configuration files are also left

to future work.

Another area for future work is in cache management of TLS sessions. While the

majority of analyzed packages used OpenSSL’s internal caching mechanism, 31 packages

provided callbacks that allow for custom cache management. Of the packages we manually

analyzed, we found that this functionality is often used to transfer cache information to and

from other processes, for load balancing purposes. For instance, when a client reconnects to

a server and the client is balanced to a different process (or machine) the server can retrieve

session information from the process that handled the client previously. While OpenSSL

uses the term “callbacks” for developer-supplied cache management functions, these should

not be confused with callbacks in asynchronous programming - they are merely custom

42

www.manaraa.com

functions that are called during the normal synchronous flow of operation. Providing this

custom behavior directly to developers through the POSIX API raises a difficult security

and architectural dilemma, as allowing applications to supply arbitrary code to system

services can be dangerous. We believe that the best way forward is to not allow developers

to handle session management directly, but provide this load balancing behavior internally

in the SSA that can be enabled by an administrator. For instance, multiple SSA instances

on other machines could synchronize their cache information to speed up connections with

load-balanced clients. A benefit beyond the existing OpenSSL API with this approach is

that differing server applications can make use of existing session data, rather than a single

application. This would allow administrators in network-constrained situations to increasingly

eliminate TLS handshake overhead.

We also see our analysis work extending in two directions. First, other popular TLS

libraries, such as GNUtls or JavaSE, could be analyzed using our methodology. While our

work is sufficient to demonstrate the practicality of the SSA, expanding it to these other

libraries would provide insight into other possible developer use cases. Second, being able to

use more powerful analysis tools would greatly improve out results. As discussed in Section 6

Joern best fit our purposes, however improvements in other tools, or Joern, would aide in

analysis. First, an understanding of preprocessor directives would have greatly reduced the

manual effort in understanding the code. If these directives were included as part of the

control and data dependencies we could have quantified the dependence of API calls based on

compiler directives. Second, intra-procedural analysis would have also increased our accuracy

and conceptually seems a straightforward path to add to Joern. Third, while there are tools

that hook directly into compiler understanding of source code, they provide a coarse grained

control over speed and accuracy. For example, in our case we were only looking to analyze a

small subset of the code within the compiled application, and no tool allows for pre-limiting

the analysis to a subset of the code. As the TLS using source files represented a very small

percentage of the total number of source files within a package, being able to restrict analysis

43

www.manaraa.com

to this subset could have substantially decreased run-times. Finally, while compiler level

understanding of source code is certainly desirable, configuring and building the source code

often involves removing a significant amount of source code and removing potential use cases.

44

www.manaraa.com

Chapter 8

Conclusion

We performed analysis of over 400 Ubuntu packages that depend on the OpenSSL

TLS/SSL API to determine how current usage supports a new TLS handling paradigm. Since

recent work has shown developers often fail in proper TLS coding, we proposed wrapping TLS

functionality within the already familiar POSIX API. Current usage not only would allow for

this transition, but in many cases seems to be the desire of developers and administrators.

Many critical decisions when creating a TLS connection, such as version control and cipher

suite selection, are already programmed to be configurable through configuration files and

preprocessing macros. This suggests that application developers already wish to place security

decisions in the hands of the users and system administrators. Further, continued use and

support of obsolete and insecure calls and options supports the notion that developers are slow

to update applications to security threats, thus supporting our decision to allow administrator

control. While there are cases where a developer may need the fine-grained control that a

TLS library can provide, in general providing this as a system service will allow developers

to easily adopt secure practices with an already familiar API and empower administrators to

better control the security of their machines.

45

www.manaraa.com

Appendix A

Category Breakdown

46

www.manaraa.com

Version selection
Function name No. of Using Packages No. of Total Calls

DTLS client method 0 0
DTLS method 1 1
DTLS server method 0 0
DTLSv1 2 client method 1 1
DTLSv1 2 method 1 1
DTLSv1 2 server method 1 1
DTLSv1 client method 10 11
DTLSv1 method 12 14
DTLSv1 server method 9 9
SSL CTX set ssl version 2 9
SSL get ssl method 3 3
SSL get version 47 94
SSL set ssl method 8 12
SSL version 13 25
SSLv23 client method 186 284
SSLv23 method 114 236
SSLv23 server method 158 201
SSLv3 client method 42 50
SSLv3 method 13 13
SSLv3 server method 28 29
TLSv1 1 client method 24 26
TLSv1 1 method 9 9
TLSv1 1 server method 19 20
TLSv1 2 client method 26 28
TLSv1 2 method 14 15
TLSv1 2 server method 20 21
TLSv1 client method 72 86
TLSv1 method 39 54
TLSv1 server method 48 53

Extension management
Function name No. of Using Packages No. of Total Calls

SRP Calc A param 0 0
SRP generate client master secret 0 0
SRP generate server master secret 0 0
SSL CTX add client custom ext 0 0
SSL CTX add server custom ext 1 1
SSL CTX get tlsext ticket keys 1 1
SSL CTX set alpn protos 17 20
SSL CTX set alpn select cb 28 31
SSL CTX set next proto select cb 13 25
SSL CTX set next protos advertised cb 23 28
SSL CTX set srp cb arg 2 2

47

www.manaraa.com

SSL CTX set srp client pwd callback 0 0
SSL CTX set srp password 1 1
SSL CTX set srp strength 0 0
SSL CTX set srp username 1 1
SSL CTX set srp username callback 2 2
SSL CTX set srp verify param callback 0 0
SSL CTX set tlsext opaque prf input callback 0 0
SSL CTX set tlsext opaque prf input callback arg 0 0
SSL CTX set tlsext servername arg 16 18
SSL CTX set tlsext servername callback 39 50
SSL CTX set tlsext status arg 10 14
SSL CTX set tlsext status cb 15 21
SSL CTX set tlsext ticket key cb 12 14
SSL CTX set tlsext ticket keys 1 1
SSL CTX set tlsext use srtp 9 15
SSL CTX use serverinfo 0 0
SSL CTX use serverinfo file 0 0
SSL extension supported 0 0
SSL get0 alpn selected 26 45
SSL get0 next proto negotiated 23 44
SSL get selected srtp profile 7 7
SSL get servername 42 69
SSL get servername type 0 0
SSL get shared curve 0 0
SSL get srp N 0 0
SSL get srp g 0 0
SSL get srp userinfo 2 2
SSL get srp username 2 6
SSL get srtp profiles 0 0
SSL get tlsext heartbeat pending 0 0
SSL get tlsext status exts 3 3
SSL get tlsext status ids 0 0
SSL get tlsext status ocsp resp 6 8
SSL heartbeat 0 0
SSL select next proto 21 21
SSL set1 curves 0 0
SSL set1 curves list 0 0
SSL set1 sigalgs 0 0
SSL set1 sigalgs list 0 0
SSL set alpn protos 1 1
SSL set cert cb 0 0
SSL set cert flags 0 0
SSL set session ticket ext 3 3
SSL set session ticket ext cb 3 6
SSL set srp server param 2 2
SSL set srp server param pw 0 0
SSL set tlsext heartbeat no requests 0 0

48

www.manaraa.com

SSL set tlsext host name 68 101
SSL set tlsext opaque prf input 0 0
SSL set tlsext status exts 0 0
SSL set tlsext status ids 0 0
SSL set tlsext status ocsp resp 18 18
SSL set tlsext status type 10 16
SSL set tlsext use srtp 0 0
SSL srp server param with username 0 0
dtls1 process heartbeat 0 0
tls1 process heartbeat 0 0

Session management
Function name No. of Using Packages No. of Total Calls

BIO ssl copy session id 0 0
DTLSv1 get timeout 5 5
DTLSv1 handle timeout 5 7
PEM read SSL SESSION 1 2
PEM read bio SSL SESSION 1 1
PEM write SSL SESSION 0 0
PEM write bio SSL SESSION 1 1
SSL CTX add session 2 2
SSL CTX flush sessions 6 6
SSL CTX get session cache mode 10 10
SSL CTX get timeout 9 9
SSL CTX remove session 19 52
SSL CTX sess get cache size 4 4
SSL CTX sess get get cb 0 0
SSL CTX sess get new cb 0 0
SSL CTX sess get remove cb 0 0
SSL CTX sess set cache size 37 43
SSL CTX sess set get cb 31 31
SSL CTX sess set new cb 31 34
SSL CTX sess set remove cb 29 31
SSL CTX sessions 0 0
SSL CTX set generate session id 0 0
SSL CTX set session cache mode 110 163
SSL CTX set session id context 72 96
SSL CTX set timeout 50 60
SSL SESSION get0 peer 0 0
SSL SESSION get compress id 4 4
SSL SESSION get ex data 4 10
SSL SESSION get ex new index 4 5
SSL SESSION get id 15 35
SSL SESSION get time 11 13
SSL SESSION get timeout 9 9
SSL SESSION new 2 3

49

www.manaraa.com

SSL SESSION print 4 4
SSL SESSION print fp 0 0
SSL SESSION set1 id context 0 0
SSL SESSION set ex data 3 6
SSL SESSION set time 2 2
SSL SESSION set timeout 8 8
SSL add session 0 0
SSL copy session id 13 21
SSL flush sessions 0 0
SSL get0 session 10 40
SSL get1 session 20 35
SSL get default timeout 4 4
SSL get session 46 105
SSL get time 0 0
SSL get timeout 0 0
SSL has matching session id 1 1
SSL remove session 0 0
SSL session reused 39 71
SSL set generate session id 0 0
SSL set session 48 68
SSL set session id context 15 24
SSL set session secret cb 4 8
SSL set time 0 0
SSL set timeout 4 4
d2i SSL SESSION 22 36
d2i SSL SESSION bio 2 2
i2d SSL SESSION 24 79
i2d SSL SESSION bio 1 1

Certificate/Key validation
Function name No. of Using Packages No. of Total Calls

SSL CTX add client CA 17 18
SSL CTX get0 certificate 4 6
SSL CTX get0 param 1 1
SSL CTX get cert store 86 166
SSL CTX get client CA list 14 20
SSL CTX get client cert cb 0 0
SSL CTX get extra chain certs 10 15
SSL CTX get max cert list 0 0
SSL CTX get verify callback 12 12
SSL CTX get verify depth 9 9
SSL CTX get verify mode 20 29
SSL CTX load verify locations 217 445
SSL CTX select current cert 0 0
SSL CTX set0 verify cert store 0 0
SSL CTX set1 verify cert store 0 0

50

www.manaraa.com

SSL CTX set cert store 25 44
SSL CTX set cert verify callback 34 46
SSL CTX set client CA list 92 116
SSL CTX set client cert cb 10 10
SSL CTX set default verify 0 0
SSL CTX set default verify paths 84 124
SSL CTX set psk client callback 3 3
SSL CTX set psk server callback 5 5
SSL CTX set trust 0 0
SSL CTX set verify 241 445
SSL CTX set verify depth 73 115
SSL CTX use psk identity hint 2 2
SSL add client CA 3 3
SSL get0 param 2 2
SSL get certificate 45 72
SSL get client CA list 6 6
SSL get ex data X509 STORE CTX idx 81 92
SSL get peer cert chain 64 79
SSL get peer certificate 245 550
SSL get psk identity 2 2
SSL get psk identity hint 0 0
SSL get verify callback 0 0
SSL get verify depth 6 6
SSL get verify mode 21 24
SSL get verify result 159 326
SSL load client CA file 86 106
SSL set0 verify cert store 0 0
SSL set1 param 0 0
SSL set1 verify cert store 0 0
SSL set client CA list 2 2
SSL set psk client callback 3 5
SSL set psk server callback 0 0
SSL set verify 83 174
SSL set verify depth 19 57
SSL set verify result 9 27
SSL use psk identity hint 0 0

Certificate/PrivateKey management
Function name No. of Using Packages No. of Total Calls

SSL CTX add0 chain cert 0 0
SSL CTX add1 chain cert 0 0
SSL CTX add extra chain cert 51 57
SSL CTX build cert chain 2 2
SSL CTX check private key 172 267
SSL CTX clear cert flags 0 0
SSL CTX clear chain certs 0 0

51

www.manaraa.com

SSL CTX clear extra chain certs 5 5
SSL CTX get0 chain certs 1 1
SSL CTX get0 privatekey 1 1
SSL CTX get extra chain certs only 0 0
SSL CTX set0 chain 0 0
SSL CTX set0 chain cert store 0 0
SSL CTX set1 chain 0 0
SSL CTX set1 chain cert store 0 0
SSL CTX set1 client certificate types 0 0
SSL CTX set1 client sigalgs 0 0
SSL CTX set1 client sigalgs list 0 0
SSL CTX set1 param 0 0
SSL CTX set1 sigalgs 0 0
SSL CTX set1 sigalgs list 0 0
SSL CTX set cert cb 5 5
SSL CTX set cert flags 0 0
SSL CTX set client cert engine 1 1
SSL CTX set current cert 2 4
SSL CTX set default passwd cb 132 235
SSL CTX set default passwd cb userdata 82 119
SSL CTX set max cert list 0 0
SSL CTX use PrivateKey 71 89
SSL CTX use PrivateKey ASN1 0 0
SSL CTX use PrivateKey file 236 475
SSL CTX use RSAPrivateKey 12 19
SSL CTX use RSAPrivateKey ASN1 2 2
SSL CTX use RSAPrivateKey file 21 28
SSL CTX use certificate 74 100
SSL CTX use certificate ASN1 0 0
SSL CTX use certificate chain file 169 284
SSL CTX use certificate file 111 200
SSL add0 chain cert 0 0
SSL add1 chain cert 0 0
SSL add dir cert subjects to stack 2 2
SSL add file cert subjects to stack 0 0
SSL build cert chain 0 0
SSL certs clear 0 0
SSL check chain 0 0
SSL check private key 16 22
SSL clear cert flags 0 0
SSL clear chain certs 0 0
SSL get0 certificate types 0 0
SSL get0 chain certs 0 0
SSL get max cert list 0 0
SSL get privatekey 20 22
SSL get shared sigalgs 0 0
SSL get sigalgs 0 0

52

www.manaraa.com

SSL select current cert 0 0
SSL set0 chain 0 0
SSL set0 chain cert store 0 0
SSL set1 chain 1 1
SSL set1 chain cert store 0 0
SSL set1 client certificate types 0 0
SSL set1 client sigalgs 0 0
SSL set1 client sigalgs list 0 0
SSL set current cert 2 2
SSL set max cert list 1 3
SSL use PrivateKey 25 36
SSL use PrivateKey ASN1 3 6
SSL use PrivateKey file 11 17
SSL use RSAPrivateKey 4 4
SSL use RSAPrivateKey ASN1 3 3
SSL use RSAPrivateKey file 5 5
SSL use certificate 21 37
SSL use certificate ASN1 3 3
SSL use certificate file 17 26

Cipher suite selection
Function name No. of Using Packages No. of Total Calls

SSL CIPHER description 17 21
SSL CIPHER find 1 1
SSL CIPHER get bits 52 98
SSL CIPHER get id 4 5
SSL CIPHER get name 71 117
SSL CIPHER get version 39 49
SSL CTX need tmp RSA 10 12
SSL CTX set1 curves 0 0
SSL CTX set1 curves list 0 0
SSL CTX set cipher list 197 301
SSL CTX set ecdh auto 25 31
SSL CTX set tmp dh 95 125
SSL CTX set tmp dh callback 35 39
SSL CTX set tmp ecdh 69 78
SSL CTX set tmp ecdh callback 3 3
SSL CTX set tmp rsa 14 24
SSL CTX set tmp rsa callback 37 76
SSL get0 ec point formats 0 0
SSL get0 raw cipherlist 0 0
SSL get1 curves 0 0
SSL get cipher 44 80
SSL get cipher bits 29 48
SSL get cipher list 11 16
SSL get cipher name 51 72

53

www.manaraa.com

SSL get cipher version 18 24
SSL get ciphers 16 21
SSL get current cipher 90 179
SSL get server tmp key 4 4
SSL get shared ciphers 4 4
SSL need tmp RSA 0 0
SSL set cipher list 24 33
SSL set ecdh auto 0 0
SSL set pref cipher 0 0
SSL set tmp dh 0 0
SSL set tmp dh callback 3 3
SSL set tmp ecdh 0 0
SSL set tmp ecdh callback 0 0
SSL set tmp rsa 0 0
SSL set tmp rsa callback 3 3

Configuration
Function name No. of Using Packages No. of Total Calls

SSL CTX clear mode 0 0
SSL CTX clear options 23 51
SSL CTX get default read ahead 0 0
SSL CTX get mode 4 4
SSL CTX get options 31 37
SSL CTX get read ahead 0 0
SSL CTX set default read ahead 1 1
SSL CTX set mode 120 222
SSL CTX set options 242 758
SSL CTX set read ahead 17 26
SSL clear mode 1 1
SSL clear options 10 14
SSL get mode 10 19
SSL get options 11 12
SSL get read ahead 0 0
SSL renegotiate abbreviated 0 0
SSL set mode 66 115
SSL set options 43 72
SSL set read ahead 5 5

Miscellaneous
Function name No. of Using Packages No. of Total Calls
OPENSSL 1.0.0 0 0
OPENSSL 1.0.1 0 0
OPENSSL 1.0.1d 0 0
OPENSSL 1.0.2 0 0
OPENSSL 1.0.2g 0 0

54

www.manaraa.com

SSL COMP add compression method 3 4
SSL COMP free compression methods 0 0
SSL COMP get compression methods 34 39
SSL COMP get name 17 26
SSL COMP set0 compression methods 0 0
SSL CONF CTX clear flags 0 0
SSL CONF CTX finish 4 4
SSL CONF CTX free 4 10
SSL CONF CTX new 4 4
SSL CONF CTX set1 prefix 0 0
SSL CONF CTX set flags 4 10
SSL CONF CTX set ssl 0 0
SSL CONF CTX set ssl ctx 4 4
SSL CONF cmd 4 8
SSL CONF cmd argv 0 0
SSL CONF cmd value type 2 2
SSL CTX callback ctrl 0 0
SSL CTX ctrl 4 4
SSL CTX get app data 20 63
SSL CTX get ex data 28 78
SSL CTX get ex new index 22 44
SSL CTX get quiet shutdown 0 0
SSL CTX get ssl method 0 0
SSL CTX set app data 18 33
SSL CTX set cookie generate cb 3 4
SSL CTX set cookie verify cb 3 4
SSL CTX set ex data 27 62
SSL CTX set purpose 8 17
SSL CTX set quiet shutdown 9 9
SSL SESSION get app data 0 0
SSL SESSION set app data 0 0
SSL callback ctrl 0 0
SSL clear 39 91
SSL ctrl 0 0
SSL export keying material 12 12
SSL get SSL CTX 45 69
SSL get app data 49 166
SSL get current compression 20 37
SSL get current expansion 2 2
SSL get ex data 52 115
SSL get ex new index 43 65
SSL get finished 6 7
SSL get peer finished 6 7
SSL get peer signature nid 0 0
SSL get quiet shutdown 0 0
SSL get secure renegotiation support 3 7
SSL get shutdown 51 95

55

www.manaraa.com

SSL num renegotiations 4 6
SSL renegotiate pending 3 6
SSL set SSL CTX 39 52
SSL set app data 47 65
SSL set ex data 60 106
SSL set purpose 0 0
SSL set quiet shutdown 29 34
SSL set shutdown 48 89
SSL set trust 0 0
SSL test functions 0 0
sk SSL CIPHER find 2 8
sk SSL CIPHER find ex 0 0

Allocation
Function name No. of Using Packages No. of Total Calls
BIO f ssl 8 10
BIO new buffer ssl connect 1 1
BIO new ssl 15 21
BIO new ssl connect 10 13
ERR load SSL strings 8 25
OpenSSL add ssl algorithms 22 24
SSL CTX SRP CTX free 0 0
SSL CTX SRP CTX init 0 0
SSL CTX free 302 986
SSL CTX new 372 919
SSL SESSION free 29 93
SSL SRP CTX free 0 0
SSL SRP CTX init 0 0
SSL dup 3 5
SSL dup CA list 1 2
SSL free 344 1032
SSL get fd 33 60
SSL get rbio 54 122
SSL get rfd 3 5
SSL get wbio 35 85
SSL get wfd 1 1
SSL library init 334 507
SSL load error strings 343 531
SSL new 355 769
SSL set bio 141 253
SSL set fd 223 471
SSL set rfd 23 36
SSL set wfd 22 35
SSLeay add ssl algorithms 54 76
lh SSL SESSION free 0 0
lh SSL SESSION new 0 0
ssl3 setup buffers 2 3

56

www.manaraa.com

ssl init wbio buffer 2 2

Connection management
Function name No. of Using Packages No. of Total Calls
BIO ssl shutdown 10 10
DTLS get link min mtu 0 0
DTLS set link mtu 0 0
DTLSv1 listen 0 0
SSL CTX set max send fragment 2 2
SSL accept 192 256
SSL alert desc string 0 0
SSL alert desc string long 41 66
SSL alert type string 1 1
SSL alert type string long 31 54
SSL connect 267 450
SSL do handshake 50 93
SSL get error 309 1247
SSL get state 20 55
SSL in accept init 6 6
SSL in before 4 4
SSL in connect init 7 9
SSL in init 19 20
SSL is init finished 38 99
SSL is server 1 1
SSL peek 38 50
SSL pending 105 168
SSL read 332 600
SSL renegotiate 12 19
SSL rstate string 0 0
SSL rstate string long 0 0
SSL set accept state 116 154
SSL set connect state 124 182
SSL set max send fragment 1 1
SSL set mtu 2 4
SSL set state 3 6
SSL shutdown 271 672
SSL state 4 9
SSL state string 10 59
SSL state string long 42 255
SSL want 9 9
SSL want nothing 0 0
SSL want read 20 41
SSL want write 15 27
SSL want x509 lookup 0 0
SSL write 328 599

57

www.manaraa.com

Instrumentation
Function name No. of Using Packages No. of Total Calls
SSL CTX get info callback 0 0
SSL CTX sess accept 6 6
SSL CTX sess accept good 7 7
SSL CTX sess accept renegotiate 6 6
SSL CTX sess cache full 6 6
SSL CTX sess cb hits 6 6
SSL CTX sess connect 5 5
SSL CTX sess connect good 5 5
SSL CTX sess connect renegotiate 5 5
SSL CTX sess hits 7 7
SSL CTX sess misses 7 7
SSL CTX sess number 8 8
SSL CTX sess timeouts 7 7
SSL CTX set info callback 54 89
SSL CTX set msg callback 4 4
SSL CTX set msg callback arg 1 1
SSL cache hit 2 2
SSL clear num renegotiations 0 0
SSL get info callback 0 0
SSL set debug 0 0
SSL set info callback 17 25
SSL set msg callback 14 15
SSL set msg callback arg 14 15
SSL set tlsext debug arg 0 0
SSL set tlsext debug callback 0 0
SSL total renegotiations 5 6

58

www.manaraa.com

Appendix B

Total Usage

59

www.manaraa.com

API function No. of using packages No. of total calls

SSL CTX new 372 919
SSL new 355 769
SSL free 344 1032
SSL load error strings 343 531
SSL library init 334 507
SSL read 332 600
SSL write 328 599
SSL get error 309 1247
SSL CTX free 302 986
SSL shutdown 271 672
SSL connect 267 450
SSL get peer certificate 245 550
SSL CTX set options 242 758
SSL CTX set verify 241 445
SSL CTX use PrivateKey file 236 475
SSL set fd 223 471
SSL CTX load verify locations 217 445
OPENSSL free 214 1356
SSL CTX set cipher list 197 301
SSL accept 192 256
SSLv23 client method 186 284
SSL CTX check private key 172 267
SSL CTX use certificate chain file 169 284
SSL get verify result 159 326
SSLv23 server method 158 201
SSL set bio 141 253
SSL CTX set default passwd cb 132 235
SSL set connect state 124 182
SSL CTX set mode 120 222
SSL set accept state 116 154
SSLv23 method 114 236
SSL CTX use certificate file 111 200
SSL CTX set session cache mode 110 163
SSL pending 105 168
SSL CTX set tmp dh 95 125
SSL CTX set client CA list 92 116
SSL get current cipher 90 179
SSL CTX get cert store 86 166
SSL load client CA file 86 106
SSL CTX set default verify paths 84 124
SSL set verify 83 174
SSL CTX set default passwd cb userdata 82 119
SSL get ex data X509 STORE CTX idx 81 92
SSL CTX use certificate 74 100
SSL CTX set verify depth 73 115

60

www.manaraa.com

SSL CTX set session id context 72 96
TLSv1 client method 72 86
SSL CIPHER get name 71 117
SSL CTX use PrivateKey 71 89
SSL CTX set tmp ecdh 69 78
SSL set tlsext host name 68 101
SSL set mode 66 115
SSL get peer cert chain 64 79
SSL set ex data 60 106
SSL CTX set info callback 54 89
SSL get rbio 54 122
SSLeay add ssl algorithms 54 76
SSL CIPHER get bits 52 98
SSL get ex data 52 115
SSL CTX add extra chain cert 51 57
SSL get cipher name 51 72
SSL get shutdown 51 95
SSL CTX set timeout 50 60
SSL do handshake 50 93
SSL get app data 49 166
SSL set session 48 68
SSL set shutdown 48 89
TLSv1 server method 48 53
SSL get version 47 94
SSL set app data 47 65
SSL get session 46 105
SSL get SSL CTX 45 69
SSL get certificate 45 72
SSL get cipher 44 80
SSL get ex new index 43 65
SSL set options 43 72
SSL get servername 42 69
SSL state string long 42 255
SSLv3 client method 42 50
SSL alert desc string long 41 66
SSL CIPHER get version 39 49
SSL CTX set tlsext servername callback 39 50
SSL clear 39 91
SSL session reused 39 71
SSL set SSL CTX 39 52
TLSv1 method 39 54
SSL is init finished 38 99
SSL peek 38 50
SSL CTX sess set cache size 37 43
SSL CTX set tmp rsa callback 37 76
SSL CTX set tmp dh callback 35 39
SSL get wbio 35 85

61

www.manaraa.com

SSL COMP get compression methods 34 39
SSL CTX set cert verify callback 34 46
SSL get fd 33 60
SSL CTX get options 31 37
SSL CTX sess set get cb 31 31
SSL CTX sess set new cb 31 34
SSL alert type string long 31 54
SSL CTX sess set remove cb 29 31
SSL SESSION free 29 93
SSL get cipher bits 29 48
SSL set quiet shutdown 29 34
SSL CTX get ex data 28 78
SSL CTX set alpn select cb 28 31
SSLv3 server method 28 29
SSL CTX set ex data 27 62
SSL get0 alpn selected 26 45
TLSv1 2 client method 26 28
SSL CTX set cert store 25 44
SSL CTX set ecdh auto 25 31
SSL use PrivateKey 25 36
SSL set cipher list 24 33
TLSv1 1 client method 24 26
i2d SSL SESSION 24 79
SSL CTX clear options 23 51
SSL CTX set next protos advertised cb 23 28
SSL get0 next proto negotiated 23 44
SSL set rfd 23 36
OpenSSL add ssl algorithms 22 24
SSL CTX get ex new index 22 44
SSL set wfd 22 35
d2i SSL SESSION 22 36
SSL CTX use RSAPrivateKey file 21 28
SSL get verify mode 21 24
SSL select next proto 21 21
SSL use certificate 21 37
SSL CTX get app data 20 63
SSL CTX get verify mode 20 29
SSL get1 session 20 35
SSL get current compression 20 37
SSL get privatekey 20 22
SSL get state 20 55
SSL want read 20 41
TLSv1 2 server method 20 21
SSL CTX remove session 19 52
SSL in init 19 20
SSL set verify depth 19 57
TLSv1 1 server method 19 20

62

www.manaraa.com

SSL CTX set app data 18 33
SSL get cipher version 18 24
SSL set tlsext status ocsp resp 18 18
SSL CIPHER description 17 21
SSL COMP get name 17 26
SSL CTX add client CA 17 18
SSL CTX set alpn protos 17 20
SSL CTX set read ahead 17 26
SSL set info callback 17 25
SSL use certificate file 17 26
SSL CTX set tlsext servername arg 16 18
SSL check private key 16 22
SSL get ciphers 16 21
BIO new ssl 15 21
SSL CTX set tlsext status cb 15 21
SSL SESSION get id 15 35
SSL set session id context 15 24
SSL want write 15 27
SSL CTX get client CA list 14 20
SSL CTX set tmp rsa 14 24
SSL set msg callback 14 15
SSL set msg callback arg 14 15
TLSv1 2 method 14 15
SSL CTX set next proto select cb 13 25
SSL copy session id 13 21
SSL version 13 25
SSLv3 method 13 13
DTLSv1 method 12 14
SSL CTX get verify callback 12 12
SSL CTX set tlsext ticket key cb 12 14
SSL CTX use RSAPrivateKey 12 19
SSL export keying material 12 12
SSL renegotiate 12 19
SSL SESSION get time 11 13
SSL get cipher list 11 16
SSL get options 11 12
SSL use PrivateKey file 11 17
BIO new ssl connect 10 13
BIO ssl shutdown 10 10
DTLSv1 client method 10 11
SSL CTX get extra chain certs 10 15
SSL CTX get session cache mode 10 10
SSL CTX need tmp RSA 10 12
SSL CTX set client cert cb 10 10
SSL CTX set tlsext status arg 10 14
SSL clear options 10 14
SSL get0 session 10 40

63

www.manaraa.com

SSL get mode 10 19
SSL set tlsext status type 10 16
SSL state string 10 59
DTLSv1 server method 9 9
SSL CTX get timeout 9 9
SSL CTX get verify depth 9 9
SSL CTX set quiet shutdown 9 9
SSL CTX set tlsext use srtp 9 15
SSL SESSION get timeout 9 9
SSL set verify result 9 27
SSL want 9 9
TLSv1 1 method 9 9
BIO f ssl 8 10
ERR load SSL strings 8 25
SSL CTX sess number 8 8
SSL CTX set purpose 8 17
SSL SESSION set timeout 8 8
SSL set ssl method 8 12
SSL CTX sess accept good 7 7
SSL CTX sess hits 7 7
SSL CTX sess misses 7 7
SSL CTX sess timeouts 7 7
SSL get selected srtp profile 7 7
SSL in connect init 7 9
SSL CTX flush sessions 6 6
SSL CTX sess accept 6 6
SSL CTX sess accept renegotiate 6 6
SSL CTX sess cache full 6 6
SSL CTX sess cb hits 6 6
SSL get client CA list 6 6
SSL get finished 6 7
SSL get peer finished 6 7
SSL get tlsext status ocsp resp 6 8
SSL get verify depth 6 6
SSL in accept init 6 6
DTLSv1 get timeout 5 5
DTLSv1 handle timeout 5 7
SSL CTX clear extra chain certs 5 5
SSL CTX sess connect 5 5
SSL CTX sess connect good 5 5
SSL CTX sess connect renegotiate 5 5
SSL CTX set cert cb 5 5
SSL CTX set psk server callback 5 5
SSL set read ahead 5 5
SSL total renegotiations 5 6
SSL use RSAPrivateKey file 5 5
SSL CIPHER get id 4 5

64

www.manaraa.com

SSL CONF CTX finish 4 4
SSL CONF CTX free 4 10
SSL CONF CTX new 4 4
SSL CONF CTX set flags 4 10
SSL CONF CTX set ssl ctx 4 4
SSL CONF cmd 4 8
SSL CTX ctrl 4 4
SSL CTX get0 certificate 4 6
SSL CTX get mode 4 4
SSL CTX sess get cache size 4 4
SSL CTX set msg callback 4 4
SSL SESSION get compress id 4 4
SSL SESSION get ex data 4 10
SSL SESSION get ex new index 4 5
SSL SESSION print 4 4
SSL get default timeout 4 4
SSL get server tmp key 4 4
SSL get shared ciphers 4 4
SSL in before 4 4
SSL num renegotiations 4 6
SSL set session secret cb 4 8
SSL set timeout 4 4
SSL state 4 9
SSL use RSAPrivateKey 4 4
SSL COMP add compression method 3 4
SSL CTX set cookie generate cb 3 4
SSL CTX set cookie verify cb 3 4
SSL CTX set psk client callback 3 3
SSL CTX set tmp ecdh callback 3 3
SSL SESSION set ex data 3 6
SSL add client CA 3 3
SSL dup 3 5
SSL get rfd 3 5
SSL get secure renegotiation support 3 7
SSL get ssl method 3 3
SSL get tlsext status exts 3 3
SSL renegotiate pending 3 6
SSL set psk client callback 3 5
SSL set session ticket ext 3 3
SSL set session ticket ext cb 3 6
SSL set state 3 6
SSL set tmp dh callback 3 3
SSL set tmp rsa callback 3 3
SSL use PrivateKey ASN1 3 6
SSL use RSAPrivateKey ASN1 3 3
SSL use certificate ASN1 3 3
SSL CONF cmd value type 2 2

65

www.manaraa.com

SSL CTX add session 2 2
SSL CTX build cert chain 2 2
SSL CTX set current cert 2 4
SSL CTX set max send fragment 2 2
SSL CTX set srp cb arg 2 2
SSL CTX set srp username callback 2 2
SSL CTX set ssl version 2 9
SSL CTX use RSAPrivateKey ASN1 2 2
SSL CTX use psk identity hint 2 2
SSL SESSION new 2 3
SSL SESSION set time 2 2
SSL add dir cert subjects to stack 2 2
SSL cache hit 2 2
SSL get0 param 2 2
SSL get current expansion 2 2
SSL get psk identity 2 2
SSL get srp userinfo 2 2
SSL get srp username 2 6
SSL set client CA list 2 2
SSL set current cert 2 2
SSL set mtu 2 4
SSL set srp server param 2 2
d2i SSL SESSION bio 2 2
sk SSL CIPHER find 2 8
ssl3 setup buffers 2 3
ssl init wbio buffer 2 2
BIO new buffer ssl connect 1 1
DTLS method 1 1
DTLSv1 2 client method 1 1
DTLSv1 2 method 1 1
DTLSv1 2 server method 1 1
PEM read SSL SESSION 1 2
PEM read bio SSL SESSION 1 1
PEM write bio SSL SESSION 1 1
SSL CIPHER find 1 1
SSL CTX add server custom ext 1 1
SSL CTX get0 chain certs 1 1
SSL CTX get0 param 1 1
SSL CTX get0 privatekey 1 1
SSL CTX get tlsext ticket keys 1 1
SSL CTX set client cert engine 1 1
SSL CTX set default read ahead 1 1
SSL CTX set msg callback arg 1 1
SSL CTX set srp password 1 1
SSL CTX set srp username 1 1
SSL CTX set tlsext ticket keys 1 1
SSL alert type string 1 1

66

www.manaraa.com

SSL clear mode 1 1
SSL dup CA list 1 2
SSL get wfd 1 1
SSL has matching session id 1 1
SSL is server 1 1
SSL set1 chain 1 1
SSL set alpn protos 1 1
SSL set max cert list 1 3
SSL set max send fragment 1 1
i2d SSL SESSION bio 1 1
BIO ssl copy session id 0 0
DTLS client method 0 0
DTLS get link min mtu 0 0
DTLS server method 0 0
DTLS set link mtu 0 0
DTLSv1 listen 0 0
OPENSSL 1.0.0 0 0
OPENSSL 1.0.1 0 0
OPENSSL 1.0.1d 0 0
OPENSSL 1.0.2 0 0
OPENSSL 1.0.2g 0 0
OPENSSL freeFunc 0 0
OPENSSL free locked 0 0
PEM write SSL SESSION 0 0
SRP Calc A param 0 0
SRP generate client master secret 0 0
SRP generate server master secret 0 0
SSL COMP free compression methods 0 0
SSL COMP set0 compression methods 0 0
SSL CONF CTX clear flags 0 0
SSL CONF CTX set1 prefix 0 0
SSL CONF CTX set ssl 0 0
SSL CONF cmd argv 0 0
SSL CTX SRP CTX free 0 0
SSL CTX SRP CTX init 0 0
SSL CTX add0 chain cert 0 0
SSL CTX add1 chain cert 0 0
SSL CTX add client custom ext 0 0
SSL CTX callback ctrl 0 0
SSL CTX clear cert flags 0 0
SSL CTX clear chain certs 0 0
SSL CTX clear mode 0 0
SSL CTX get client cert cb 0 0
SSL CTX get default read ahead 0 0
SSL CTX get extra chain certs only 0 0
SSL CTX get info callback 0 0
SSL CTX get max cert list 0 0

67

www.manaraa.com

SSL CTX get quiet shutdown 0 0
SSL CTX get read ahead 0 0
SSL CTX get ssl method 0 0
SSL CTX select current cert 0 0
SSL CTX sess get get cb 0 0
SSL CTX sess get new cb 0 0
SSL CTX sess get remove cb 0 0
SSL CTX sessions 0 0
SSL CTX set0 chain 0 0
SSL CTX set0 chain cert store 0 0
SSL CTX set0 verify cert store 0 0
SSL CTX set1 chain 0 0
SSL CTX set1 chain cert store 0 0
SSL CTX set1 client certificate types 0 0
SSL CTX set1 client sigalgs 0 0
SSL CTX set1 client sigalgs list 0 0
SSL CTX set1 curves 0 0
SSL CTX set1 curves list 0 0
SSL CTX set1 param 0 0
SSL CTX set1 sigalgs 0 0
SSL CTX set1 sigalgs list 0 0
SSL CTX set1 verify cert store 0 0
SSL CTX set cert flags 0 0
SSL CTX set default verify 0 0
SSL CTX set generate session id 0 0
SSL CTX set max cert list 0 0
SSL CTX set srp client pwd callback 0 0
SSL CTX set srp strength 0 0
SSL CTX set srp verify param callback 0 0
SSL CTX set tlsext opaque prf input callback 0 0
SSL CTX set tlsext opaque prf input callback arg 0 0
SSL CTX set trust 0 0
SSL CTX use PrivateKey ASN1 0 0
SSL CTX use certificate ASN1 0 0
SSL CTX use serverinfo 0 0
SSL CTX use serverinfo file 0 0
SSL SESSION get0 peer 0 0
SSL SESSION get app data 0 0
SSL SESSION print fp 0 0
SSL SESSION set1 id context 0 0
SSL SESSION set app data 0 0
SSL SRP CTX free 0 0
SSL SRP CTX init 0 0
SSL add0 chain cert 0 0
SSL add1 chain cert 0 0
SSL add file cert subjects to stack 0 0
SSL add session 0 0

68

www.manaraa.com

SSL alert desc string 0 0
SSL build cert chain 0 0
SSL callback ctrl 0 0
SSL certs clear 0 0
SSL check chain 0 0
SSL clear cert flags 0 0
SSL clear chain certs 0 0
SSL clear num renegotiations 0 0
SSL ctrl 0 0
SSL extension supported 0 0
SSL flush sessions 0 0
SSL get0 certificate types 0 0
SSL get0 chain certs 0 0
SSL get0 ec point formats 0 0
SSL get0 raw cipherlist 0 0
SSL get1 curves 0 0
SSL get info callback 0 0
SSL get max cert list 0 0
SSL get peer signature nid 0 0
SSL get psk identity hint 0 0
SSL get quiet shutdown 0 0
SSL get read ahead 0 0
SSL get servername type 0 0
SSL get shared curve 0 0
SSL get shared sigalgs 0 0
SSL get sigalgs 0 0
SSL get srp N 0 0
SSL get srp g 0 0
SSL get srtp profiles 0 0
SSL get time 0 0
SSL get timeout 0 0
SSL get tlsext heartbeat pending 0 0
SSL get tlsext status ids 0 0
SSL get verify callback 0 0
SSL heartbeat 0 0
SSL need tmp RSA 0 0
SSL remove session 0 0
SSL renegotiate abbreviated 0 0
SSL rstate string 0 0
SSL rstate string long 0 0
SSL select current cert 0 0
SSL set0 chain 0 0
SSL set0 chain cert store 0 0
SSL set0 verify cert store 0 0
SSL set1 chain cert store 0 0
SSL set1 client certificate types 0 0
SSL set1 client sigalgs 0 0

69

www.manaraa.com

SSL set1 client sigalgs list 0 0
SSL set1 curves 0 0
SSL set1 curves list 0 0
SSL set1 param 0 0
SSL set1 sigalgs 0 0
SSL set1 sigalgs list 0 0
SSL set1 verify cert store 0 0
SSL set cert cb 0 0
SSL set cert flags 0 0
SSL set debug 0 0
SSL set ecdh auto 0 0
SSL set generate session id 0 0
SSL set pref cipher 0 0
SSL set psk server callback 0 0
SSL set purpose 0 0
SSL set srp server param pw 0 0
SSL set time 0 0
SSL set tlsext debug arg 0 0
SSL set tlsext debug callback 0 0
SSL set tlsext heartbeat no requests 0 0
SSL set tlsext opaque prf input 0 0
SSL set tlsext status exts 0 0
SSL set tlsext status ids 0 0
SSL set tlsext use srtp 0 0
SSL set tmp dh 0 0
SSL set tmp ecdh 0 0
SSL set tmp ecdh callback 0 0
SSL set tmp rsa 0 0
SSL set trust 0 0
SSL srp server param with username 0 0
SSL test functions 0 0
SSL use psk identity hint 0 0
SSL want nothing 0 0
SSL want x509 lookup 0 0
dtls1 process heartbeat 0 0
lh SSL SESSION free 0 0
lh SSL SESSION new 0 0
sk SSL CIPHER find ex 0 0
tls1 process heartbeat 0 0

70

www.manaraa.com

References

[1] Let’s encrypt: Delivering SSL/TLS everywhere. https://letsencrypt.org/2014/11/18/

announcing-lets-encrypt.html. Accessed: 2018-01-09.

[2] Repositories. https://help.ubuntu.com/community/Repositories. Accessed: 2018-01-10.

[3] Acharya, M., Xie, T., Pei, J., and Xu, J. Mining api patterns as partial orders from

source code: from usage scenarios to specifications. In ACM International Symposium on

Foundations of Software Engineering (FSE) (2007), ACM, pp. 25–34.

[4] Amour, L. S., and Petullo, W. M. Improving application security through TLS-library

redesign. In Security, Privacy, and Applied Cryptography Engineering (SPACE) (2015), Springer,

pp. 75–94.

[5] Bates, A., Pletcher, J., Nichols, T., Hollembaek, B., Tian, D., Butler, K. R.,

and Alkhelaifi, A. Securing SSL certificate verification through dynamic linking. In ACM

Conference on Computer and Communications Security (CCS) (2014), pp. 394–405.

[6] Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., and Zanella-

Béguelin, S. Proving the TLS handshake secure (as it is). In International Cryptology

Conference (CRYPTO) (2014), Springer, pp. 235–255.

[7] Bhargavan, K., Lavaud, A. D., Fournet, C., Pironti, A., and Strub, P. Y. Triple

handshakes and cookie cutters: Breaking and fixing authentication over TLS. In IEEE

Symposium on Security and Privacy (SP) (2014), IEEE, pp. 98–113.

[8] Duong, T., and Rizzo, J. The CRIME attack. In Presentation at ekoparty Security

Conference (2012).

[9] Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., and Smith,

M. Why Eve and Mallory love Android: An analysis of Android SSL (in) security. In ACM

Conference on Computer and Communications Security (CCS) (2012), ACM, pp. 50–61.

[10] Fahl, S., Harbach, M., Perl, H., Koetter, M., and Smith, M. Rethinking SSL

development in an appified world. In ACM Conference on Computer and Communications

Security (CCS) (2013), ACM, pp. 49–60.

71

https://letsencrypt.org/2014/11/18/announcing-lets-encrypt.html
https://letsencrypt.org/2014/11/18/announcing-lets-encrypt.html
https://help.ubuntu.com/community/Repositories

www.manaraa.com

[11] Foundation, O. S. 1.0.2 manpages. https://www.openssl.org/docs/man1.0.2/ssl/SSL_

CTX_new.html. Accessed: 15 December 2017.

[12] Fowkes, J., and Sutton, C. Parameter-free probabilistic API mining across GitHub. In

ACM International Symposium on Foundations of Software Engineering (FSE) (2016), ACM,

pp. 254–265.

[13] Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., and Shmatikov, V.

The most dangerous code in the world: Validating SSL certificates in non-browser software. In

ACM Conference on Computer and Communications Security (CCS) (2012), ACM, pp. 38–49.

[14] Giesen, F., Kohlar, F., and Stebila, D. On the security of TLS renegotiation. In ACM

Conference on Computer and Communications Security (CCS) (2013), ACM, pp. 387–398.

[15] Gluck, Y., Harris, N., and Prado, A. BREACH: Reviving the CRIME attack. Unpublished

manuscript (2013).

[16] He, B., Rastogi, V., Cao, Y., Chen, Y., Venkatakrishnan, V., Yang, R., and Zhang,

Z. Vetting SSL usage in applications with SSLint. In IEEE Symposium on Security and Privacy

(SP) (2015), IEEE, pp. 519–534.

[17] Jager, T., Kohlar, F., Schäge, S., and Schwenk, J. On the security of TLS-DHE

in the standard model. In International Cryptology Conference (CRYPTO). Springer, 2012,

pp. 273–293.

[18] Kagdi, H., Collard, M. L., and Maletic, J. I. A survey and taxonomy of approaches

for mining software repositories in the context of software evolution. Journal of Software:

Evolution and Process 19, 2 (2007), 77–131.

[19] Krawczyk, H., Paterson, K. G., and Wee, H. On the security of the TLS protocol:

A systematic analysis. In International Cryptology Conference (CRYPTO). Springer, 2013,

pp. 429–448.

[20] Malinen, J. TLS session ticket extension problem when using the ssl23 client hello method.

https://mta.openssl.org/pipermail/openssl-dev/2015-July/002162.html. Accessed:

15 January, 2018.

[21] Mavrogiannopoulos, N. Fedora system-wide crypto policy. http://fedoraproject.org/

wiki/Changes/CryptoPolicy. Accessed: 15 December 2017.

[22] Mller, B. This is POODLE bites: Exploiting the SSL 3.0 fallback. https://www.openssl.

org/~bodo/ssl-poodle.pdf.

72

https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_new.html
https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_new.html
https://mta.openssl.org/pipermail/openssl-dev/2015-July/002162.html
http://fedoraproject.org/wiki/Changes/CryptoPolicy
http://fedoraproject.org/wiki/Changes/CryptoPolicy
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf

www.manaraa.com

[23] Oliveira, D., Rosenthal, M., Morin, N., Yeh, K.-C., Cappos, J., and Zhuang, Y.

It’s the psychology stupid: How heuristics explain software vulnerabilities and how priming

can illuminate developer’s blind spots. In Annual Computer Security Applications Conference

(ACSAC) (2014), ACM, pp. 296–305.

[24] O’Neill, M., Heidbrink, S., Ruoti, S., Whitehead, J., Bunker, D., Dickinson,

L., Hendershot, T., Reynolds, J., Seamons, K., and Zappala, D. Trustbase: An

architecture to repair and strengthen certificate-based authentication. In USENIX Security

Symposium (2017).

[25] Paterson, K. G., Ristenpart, T., and Shrimpton, T. Tag size does matter: Attacks and

proofs for the TLS record protocol. In International Conference on the Theory and Application

of Cryptology and Information Security (ASIACRYPT) (2011), vol. 7073, Springer, pp. 372–389.

[26] Sounthiraraj, D., Sahs, J., Greenwood, G., Lin, Z., and Khan, L. SMV-hunter: Large

scale, automated detection of SSL/TLS man-in-the-middle vulnerabilities in Android apps. In

Network and Distributed System Security Symposium (NDSS) (2014).

[27] Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., and Zhang, D. Mining succinct and

high-coverage api usage patterns from source code. In IEEE Conference on Mining Software

Repositories (MSR) (2013), IEEE, pp. 319–328.

[28] Woo, T. Y., Bindignavle, R., Su, S., and Lam, S. S. SNP: An interface for secure

network programming. In USENIX Summer (1994), pp. 45–58.

[29] Xie, T., and Pei, J. Mapo: Mining api usages from open source repositories. In International

Workshop on Mining Software Repositories (2006), ACM, pp. 54–57.

[30] Yamaguchi, F., Golde, N., Arp, D., and Rieck, K. Modeling and discovering vulnerabil-

ities with code property graphs. In IEEE Symposium on Security and Privacy (SP) (2014),

IEEE, pp. 590–604.

73

	Brigham Young University
	BYU ScholarsArchive
	2018-03-01

	A Large-Scale Analysis of How OpenSSL Is Used in Open-Source Software
	Scott Jared Heidbrink
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Tables
	1 Introduction
	2 Related Work
	2.1 TLS library failures
	2.2 TLS library replacements
	2.3 API Mining

	3 Background
	3.1 TLS/SSL
	3.2 OpenSSL
	3.3 Secure Socket API

	4 Methodology
	4.1 Extracting Symbols
	4.2 API Documentation Analysis
	4.3 Categorization of Symbols
	4.4 Source Code Collection
	4.5 Graph Generation
	4.5.1 Joern

	4.6 Symbol Analysis
	4.7 Synthesis and Recommendations
	4.8 Limitations

	5 Results
	5.1 Data Collection
	5.2 API Documentation Analysis
	5.3 Category Analysis
	5.3.1 Version selection
	5.3.2 Extension management
	5.3.3 Session management
	5.3.4 Certificate/PrivateKey management
	5.3.5 Certificate/Key validation
	5.3.6 Cipher suite selection
	5.3.7 Configuration
	5.3.8 Allocation
	5.3.9 Connection management
	5.3.10 Instrumentation
	5.3.11 Miscellaneous

	6 Failures
	7 Future Work
	8 Conclusion
	Appendix A Category Breakdown
	Appendix B Total Usage
	References

